GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisE in Thermovibrio ammonificans HB-1

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate WP_013538076.1 THEAM_RS06690 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>NCBI__GCF_000185805.1:WP_013538076.1
          Length = 443

 Score =  268 bits (684), Expect = 6e-76
 Identities = 161/400 (40%), Positives = 242/400 (60%), Gaps = 12/400 (3%)

Query: 391 IIENVRDKGNSALLEYTEKFDGVKLS--NPVLNAPFPEEYFEGLTEEMKEALDLSIENVR 448
           IIENVR   ++A+  Y +KFD V+L+  N  ++    EE F  + +E+ +A++ ++E VR
Sbjct: 38  IIENVRQFRDTAVFGYAKKFDRVELTPENVKVSEREIEEAFNRVPKEVVKAIEFAVERVR 97

Query: 449 KFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVPAQVAQCK 508
           +FH  Q   E     T+PG++  +   P++  G+Y+PGG A  PS+ +M  VPA+VA  +
Sbjct: 98  RFHEHQ--KENSYFVTEPGIVLGQKVTPLDSAGIYVPGGKASYPSSVVMNAVPAKVAGVE 155

Query: 509 EIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKVDKILGPG 568
           ++V  +P   S  +V+P  +  A+  G ++I   GGA  VAA+A+GTE+IPKVDKI+GPG
Sbjct: 156 KVVMITPAIGSL-EVNPYTLVAAKLSGVNEIYRVGGAHGVAAVAFGTESIPKVDKIVGPG 214

Query: 569 NQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEHGIDSQVI 628
           N +V  AK ++         IDM AGPSE+LVIADE A+ D+VA+DLLSQAEH   +   
Sbjct: 215 NIYVALAKKFLFGTVD----IDMVAGPSEILVIADESANPDWVATDLLSQAEHDELAGAF 270

Query: 629 LVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCIAH-STIVLCDGYEEALEMSNQYAPE 687
           LV    S++  QE+  AV  +  +L R +I RK I +  T+ L +    + +++N+ APE
Sbjct: 271 LV--THSDRVAQEVVKAVEEKLKKLSRKEIARKAIENFGTVFLTEDVNHSCDVANEIAPE 328

Query: 688 HLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSGANTATF 747
           HL +        +  + +AG++F+G YT ES GDY  G NH LPT G AR +S      F
Sbjct: 329 HLEVATKEPFGLLDRIKHAGAIFLGHYTCESLGDYVLGPNHVLPTGGSARFFSPLGVYDF 388

Query: 748 QKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIR 787
            K  +   +TPEG + +G A   +A+ EGL+ HR AV++R
Sbjct: 389 IKRSSVIYVTPEGFKQVGWAARELAECEGLEAHRLAVEVR 428


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 807
Number of extensions: 43
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 443
Length adjustment: 37
Effective length of query: 762
Effective length of database: 406
Effective search space:   309372
Effective search space used:   309372
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory