GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Pyrolobus fumarii 1A

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate WP_014027034.1 PYRFU_RS07375 serine hydroxymethyltransferase

Query= BRENDA::Q9UWT5
         (433 letters)



>NCBI__GCF_000223395.1:WP_014027034.1
          Length = 441

 Score =  580 bits (1494), Expect = e-170
 Identities = 283/419 (67%), Positives = 344/419 (82%), Gaps = 6/419 (1%)

Query: 3   LPKELEKVLEITKAQNVWRRTQTLNLIASENVMSPLAESVYMSDFMSRYAEGKPYKRYYQ 62
           LP E+ +V+E T+A N WRR +T+NLIASENVMSPLAE+ Y++D M RYAEGKP KRYYQ
Sbjct: 11  LPSEVREVIETTRAHNRWRR-ETINLIASENVMSPLAEAAYLNDMMHRYAEGKPRKRYYQ 69

Query: 63  GTKYTDEIETLTMELMNEITNSKDCDLRPTSGTIANAAVFRVLA-----EPGDKALIAPV 117
           G +Y D +E L M+ M E+      + RP SGTIANA VFR LA     E   KALIAPV
Sbjct: 70  GLRYVDVVEELVMKYMGELLGGAFIEPRPVSGTIANATVFRALASCPSSEGRPKALIAPV 129

Query: 118 QAGAHVSHTKFGTLGALGIQHIEMPFDEENINVDVDKAIKMIEEVKPKFVVLGGSLYLFP 177
           QAGAHVSHTKFGTLGAL I+HIE+P+D +N+NVDVDKA+KMIE+VKP FVVLGGSLYLFP
Sbjct: 130 QAGAHVSHTKFGTLGALCIEHIELPYDPDNLNVDVDKAVKMIEDVKPVFVVLGGSLYLFP 189

Query: 178 HPTKELAQHVHAVGAKLVYDAAHVYGLIEGKVWSNPLKDGADIMTVSTHKTFPGPQGGAI 237
           HP +E+A+  H+VGAKLVYDAAHV GLI GK W NPL  GADIMT STHKTFPGPQGG I
Sbjct: 190 HPVREIAEAAHSVGAKLVYDAAHVLGLIVGKRWRNPLDHGADIMTASTHKTFPGPQGGII 249

Query: 238 FSDGSEVFKQVSKTIFPWFVSNHHLHRLPATAVTAIEMKYFGESYANQILRNSKALAEAL 297
            +   +++K VS+ +FP+FVSNHHLHRLPA A+TA+EMKY+GE+YA+Q++RN+KALAEAL
Sbjct: 250 ATRQEDLYKAVSRIVFPYFVSNHHLHRLPALAITALEMKYYGEAYADQVVRNAKALAEAL 309

Query: 298 AERGFKVIGENLGYTKSHQVAVDVRQFGGGNKIAKLLEDANIIVNKNLLPYDKPEDVSDP 357
           A  GFKV+GE+LGYT+SHQVAVDVR++GGG K A+LLE+ANIIVNKNLLPYD P+ + +P
Sbjct: 310 AAEGFKVLGEHLGYTRSHQVAVDVREYGGGAKAAQLLEEANIIVNKNLLPYDPPDAIKNP 369

Query: 358 SGLRIGVQEMTRYGMKEGEMEEIAELFKKVIIDKKDVNEVKKEVIEMRRNFLEVKYTFD 416
           SGLR+GVQEMTR+GMKE +M EIA   ++V+ID +D  +V+KEV+E RRNF +V Y FD
Sbjct: 370 SGLRLGVQEMTRWGMKEDDMREIARFMRRVVIDGEDPAKVRKEVVEFRRNFQKVHYAFD 428


Lambda     K      H
   0.316    0.134    0.379 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 614
Number of extensions: 19
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 433
Length of database: 441
Length adjustment: 32
Effective length of query: 401
Effective length of database: 409
Effective search space:   164009
Effective search space used:   164009
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory