GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argJ in Ammonifex degensii KC4

Align Arginine biosynthesis bifunctional protein ArgJ; EC 2.3.1.35; EC 2.3.1.1 (characterized)
to candidate WP_015739795.1 ADEG_RS09255 bifunctional glutamate N-acetyltransferase/amino-acid acetyltransferase ArgJ

Query= SwissProt::Q9K8V3
         (411 letters)



>NCBI__GCF_000024605.1:WP_015739795.1
          Length = 399

 Score =  393 bits (1009), Expect = e-114
 Identities = 208/396 (52%), Positives = 266/396 (67%), Gaps = 2/396 (0%)

Query: 16  GSVTSAKGFSAVGIHTGVKRKRKDLGAIVCEVPASSAAVYTLNKVQAAPLKVTQESIAVE 75
           G VT+ KGF A G+  G+KR +KDL  +V EVPA++A V+T N+V+AAP+ +TQ  +A E
Sbjct: 6   GGVTAPKGFLANGVAAGIKRYKKDLALVVSEVPAAAAGVFTTNRVKAAPVLLTQSRVA-E 64

Query: 76  GKLQAMIVNSGIANACTGKRGLDDAYTMRAVGAETFHIPEHYVAVTSTGVIGEFLPMDVI 135
           G+ QA+IVNSG ANACTG  GL DA  M    AE   +PE  V V+STG+IGE LP++ I
Sbjct: 65  GQAQAVIVNSGNANACTGLEGLADARLMARAAAEALSLPEEMVLVSSTGIIGERLPVEKI 124

Query: 136 TNGIRQLKPEATIEGAHAFNEAILTTDTVEKHTCYQTIVNGKTVTVGGVAKGSGMIHPNM 195
              + +L      EG  A  EAI+TTDTV K    + ++ G T  +GG+AKGSGMIHP M
Sbjct: 125 LKALPELVKGLGREGHRAAAEAIMTTDTVPKEAAVEFLLEGFTCRIGGMAKGSGMIHPCM 184

Query: 196 ATMLSFVTTDANIDHGHLQGALSAITNETFNRITVDGDTSTNDMVVVMASGLAENEALTP 255
           ATML+F+TTD  I    L+ AL  +  +TFN ITVDGDTSTNDMV+V+A+G A N  +  
Sbjct: 185 ATMLAFLTTDVAITPELLKLALREVVEDTFNLITVDGDTSTNDMVLVLANGQASNPMIEK 244

Query: 256 EHPDWANFYKALQLACEDLAKQIARDGEGATKLIEVEVTGAANDQEAGMVAKQIVGSDLV 315
           E P +A F +AL      LA+QIARDGEGAT+LIEV+V GA   +EA   A+ +  S+LV
Sbjct: 245 EGPAYATFKQALYEVAASLARQIARDGEGATRLIEVQVEGACTKEEARRAARAVAASNLV 304

Query: 316 KTAIYGADANWGRIICAIGYSGCEVNQETIDIAIGPIVTLKQSEPTGFSEEEATAYLKEA 375
           K A++G D NWGRI+CA+GYSG   + E + + +GP+  + + + T F EEEA A L   
Sbjct: 305 KAAVFGKDPNWGRIVCALGYSGARFDPEKVAVWLGPVQVVAEGKGTSFDEEEARAAL-ST 363

Query: 376 DPVKISVNLHIGNGTGKAWGCDLTYDYVRINAGYRT 411
           DPV I VNL  G     AWGCDLTYDYVRINA YRT
Sbjct: 364 DPVIIRVNLGAGEARATAWGCDLTYDYVRINAHYRT 399


Lambda     K      H
   0.315    0.131    0.373 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 424
Number of extensions: 13
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 411
Length of database: 399
Length adjustment: 31
Effective length of query: 380
Effective length of database: 368
Effective search space:   139840
Effective search space used:   139840
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory