GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Acidimicrobium ferrooxidans DSM 10331

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate WP_015799196.1 AFER_RS09320 serine hydroxymethyltransferase

Query= BRENDA::Q5SI56
         (407 letters)



>NCBI__GCF_000023265.1:WP_015799196.1
          Length = 424

 Score =  442 bits (1137), Expect = e-129
 Identities = 239/416 (57%), Positives = 289/416 (69%), Gaps = 15/416 (3%)

Query: 6   KRDEALFELIALEEKRQREGLELIASENFVSKQVREAVGSVLTNKYAEGYPGARYYGGCE 65
           K D  L  L+  E++RQR  L+LIASENF S  V EA GSVLTNKYAEGYPG RYYGG  
Sbjct: 6   KEDPELAALLVREQERQRSTLQLIASENFTSAAVLEATGSVLTNKYAEGYPGRRYYGGNA 65

Query: 66  VIDRVESLAIERAKALFGAAWANVQPHSGSQANMAVYMALMEPGDTLMGMDLAAGGHLTH 125
           V+D VESLAIERA+ALF A WANVQPH+G+ AN A Y+AL+ PGD ++ M L  GGHLTH
Sbjct: 66  VVDEVESLAIERARALFRAPWANVQPHAGANANAAAYLALLAPGDPVLAMRLDQGGHLTH 125

Query: 126 GSRVNFSGKLYKVVSYGVR---PDTELIDLEEVRRLALEHRPKVIVAGASAYPRFWDFKA 182
           GS VNFSG+LY+ V YGVR   P+ E +DL+++  LA  H P++IV GA+AYPR  D   
Sbjct: 126 GSPVNFSGQLYRFVGYGVRQEDPNREWLDLDQLADLARAHHPRLIVVGATAYPRVIDVTP 185

Query: 183 FREIADEVGAYLVVDMAHFAGLVAAGLHPNPL------PYAHVVTSTTHKTLRGPRGGLI 236
            R IADEVGA ++ D AH AGL+AAG++PNPL        A VVT TTHKTLRGPRG  I
Sbjct: 186 IRAIADEVGARVLFDAAHVAGLIAAGVYPNPLWLASGERGADVVTFTTHKTLRGPRGAAI 245

Query: 237 LSNDPELGKRIDKLIFPGIQGGPLEHVIAGKAVAFFEALQPEFKEYSRLVVENAKRLAEE 296
           + ++ ++ K IDK +FPG+QGGPLEH IA KAVAF EA  P F++Y R VV NA+ LA  
Sbjct: 246 VGHE-DVAKAIDKAVFPGLQGGPLEHAIAAKAVAFREAASPSFRDYGRRVVANAQTLAAS 304

Query: 297 LARRGYRIVTGGTDNHLFLVDLR--PKGLTGKEAEERLDAVGITVNKNAIPFDPKPPRVT 354
           L   G+R+V+GGTD HL LVDLR     L GK A++ LDA GIT+N+N IPFDP+ P VT
Sbjct: 305 LEAEGFRLVSGGTDVHLILVDLRDFDPELDGKTAQDLLDAAGITLNRNQIPFDPRSPFVT 364

Query: 355 SGIRIGTPAITTRGFTPEEMPLVAELIDRALLEGPSEALRE---EVRRLALAHPMP 407
           SG+R+GT A+TT G   EEM  V  LI   L     E +RE   +VR L  A   P
Sbjct: 365 SGLRLGTAALTTTGMGEEEMKRVGSLIATVLRARTDEVVREVRQQVRELCAAFVPP 420


Lambda     K      H
   0.319    0.137    0.398 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 558
Number of extensions: 31
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 407
Length of database: 424
Length adjustment: 31
Effective length of query: 376
Effective length of database: 393
Effective search space:   147768
Effective search space used:   147768
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory