GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisE in Thioalkalivibrio halophilus HL17

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate WP_018947394.1 B1A74_RS12400 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>NCBI__GCF_001995255.1:WP_018947394.1
          Length = 434

 Score =  237 bits (605), Expect = 9e-67
 Identities = 145/406 (35%), Positives = 228/406 (56%), Gaps = 16/406 (3%)

Query: 388 VNPIIENVRDKGNSALLEYTEKFDGVKLSNPVLNAPFPEEYFEGLTEEM----KEALDLS 443
           V  I++ V+ +G++A+L YTE+FD ++  + V     P++  +   E +    +EAL+ +
Sbjct: 36  VREILDAVKAEGDAAVLRYTERFDRLERDS-VAGLEVPQQRLQAALEAIPAAQREALETA 94

Query: 444 IENVRKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVPAQ 503
            E + ++   Q   +    +    VL  R   P++ VGLY+PGG A  PS+ LM  VPA+
Sbjct: 95  AERIGEYARHQSMQDWQFTDADGTVLGQRVT-PLDSVGLYVPGGKAAYPSSVLMNAVPAR 153

Query: 504 VAQCKEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKVDK 563
           VA   +++   P    DG+++  V+  A   G  ++   GGAQAV A+AYGT TIP VDK
Sbjct: 154 VAGVGQLIMVVPA--PDGELNDLVLAAAAVAGVDRVFTVGGAQAVGALAYGTATIPAVDK 211

Query: 564 ILGPGNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEHGI 623
           I+GPGN FV AAK     +      IDM AGPSE+LV+ D + D +++A+DL SQAEH  
Sbjct: 212 IVGPGNIFVAAAK----REVFGTVGIDMIAGPSEILVVCDGETDPEWIAADLFSQAEHDE 267

Query: 624 DSQVILVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCIAH-STIVLCDGYEEALEMSN 682
            +Q IL  V+     +  + +A+     ++PR DI+R  + +   ++     ++A+ ++N
Sbjct: 268 QAQSIL--VSWDHAFLDRVNEAMDRLLEEMPRADIIRTSLQNRGALIAARDLDDAVAVAN 325

Query: 683 QYAPEHLILQIANANDYVKL-VDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSG 741
           + APEHL L +A+    +   + +AG+VF+G +T E+ GDY +G NH LPT   AR  S 
Sbjct: 326 RVAPEHLELSLADPQAALDAGLRHAGAVFMGRHTSEALGDYCAGPNHVLPTSRTARFSSP 385

Query: 742 ANTATFQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIR 787
                FQK  +    +PEG   +GR    +A  EGL  H  + ++R
Sbjct: 386 LGVYDFQKRSSIIQCSPEGAARLGRTAAELAHGEGLTAHARSAELR 431


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 659
Number of extensions: 29
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 434
Length adjustment: 37
Effective length of query: 762
Effective length of database: 397
Effective search space:   302514
Effective search space used:   302514
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory