GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Methylovulum miyakonense HT12

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate WP_019866923.1 METMI_RS0114015 serine hydroxymethyltransferase

Query= BRENDA::L7Y8B0
         (417 letters)



>NCBI__GCF_000384075.1:WP_019866923.1
          Length = 417

 Score =  610 bits (1573), Expect = e-179
 Identities = 301/416 (72%), Positives = 346/416 (83%)

Query: 1   MFSKQDQIQGYDDALLAAMNAEEQRQEDHIELIASENYTSKRVMQAQGSGLTNKYAEGYP 60
           MF+K   IQG+DD L  AM  E  RQEDHIELIASENY S RVMQA GS LTNKYAEGYP
Sbjct: 1   MFNKSMSIQGFDDELFNAMEEERHRQEDHIELIASENYASPRVMQALGSQLTNKYAEGYP 60

Query: 61  GKRYYGGCEHVDKVEALAIERAKQLFGADYANVQPHSGSSANGAVYLALVQAGDTILGMS 120
           GKRYYGGCE VDK E LAI+RAK LFGADYANVQPHSGS AN AV +A++Q G+T+LG+S
Sbjct: 61  GKRYYGGCEFVDKAEQLAIDRAKALFGADYANVQPHSGSQANMAVLMAMMQPGETLLGLS 120

Query: 121 LAHGGHLTHGAKVSSSGKLYNAVQYGIDTNTGLIDYDEVERLAVEHKPKMIVAGFSAYSK 180
           LA GGHLTHGAK + SGKLYNAVQYG+D  T  I+Y +VE LA+EHKPK+I+AGFSAYS+
Sbjct: 121 LADGGHLTHGAKPNFSGKLYNAVQYGLDPETSEINYAQVEALALEHKPKVIMAGFSAYSR 180

Query: 181 TLDFPRFRAIADKVGALLFVDMAHVAGLVAAGLYPNPIPFADVVTTTTHKTLRGPRGGLI 240
             D+ RFR IAD VGA L VDMAHVAGL+AAGLYPNP+PFAD VT+TTHK+LRGPRGGLI
Sbjct: 181 IWDWQRFREIADLVGAYLVVDMAHVAGLIAAGLYPNPVPFADAVTSTTHKSLRGPRGGLI 240

Query: 241 LAKANEEIEKKLNAAVFPGAQGGPLMHVIAAKAVCFKEALEPEFKAYQQQVIENAQAMAQ 300
           + K+N ++EKK ++ +FPG QGGP MHVIAAKAV FKEA+EPEFK YQQQVI+NAQAMA+
Sbjct: 241 VCKSNPDLEKKFDSNIFPGIQGGPSMHVIAAKAVAFKEAMEPEFKTYQQQVIKNAQAMAK 300

Query: 301 VFVDRGYDVVSGGTDNHLFLVSLIRQGLTGKDADAALGCAHITVNKNAVPNDPQSPFVTS 360
           VF+ RG+DVVSGGTD+HL LVSLI +G+TGK ADAALG AHITVNKNAVPNDPQSPFVTS
Sbjct: 301 VFMSRGFDVVSGGTDDHLMLVSLIAKGITGKAADAALGRAHITVNKNAVPNDPQSPFVTS 360

Query: 361 GLRIGTPAVTTRGFKVAQCVALAGWICDILDNLGDADVEADVAKNVAALCADFPVY 416
           G+R+GTPA TTRGFK  +   +A  +CD++DNL D  V A V + V  LCA FPVY
Sbjct: 361 GIRVGTPAPTTRGFKETEVTEIANMMCDVMDNLEDESVIASVRERVGNLCARFPVY 416


Lambda     K      H
   0.318    0.134    0.390 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 594
Number of extensions: 17
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 417
Length of database: 417
Length adjustment: 31
Effective length of query: 386
Effective length of database: 386
Effective search space:   148996
Effective search space used:   148996
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory