GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD'B in Hydrogenovibrio kuenenii DSM 12350

Align Succinylornithine transaminase; SOAT; Succinylornithine aminotransferase; EC 2.6.1.81 (characterized)
to candidate WP_024850313.1 N745_RS0101155 adenosylmethionine--8-amino-7-oxononanoate transaminase

Query= SwissProt::Q8ZPV2
         (408 letters)



>NCBI__GCF_000526715.1:WP_024850313.1
          Length = 442

 Score =  157 bits (397), Expect = 6e-43
 Identities = 124/389 (31%), Positives = 201/389 (51%), Gaps = 35/389 (8%)

Query: 29  EGSRLWDQQGKEYIDFAGGIAVNALGHAHPALREALNEQANRFWHIG-NGYTNEPALRLA 87
           +GS +    G E +D          G+ HP +++A++EQ +   HI   G T+EPA+ L+
Sbjct: 43  QGSVITLADGTELVDGMSSWWAALHGYNHPKIQQAMHEQIDIMPHIMFGGLTHEPAIELS 102

Query: 88  KKLIDAT--FAERVFFCNSGAEANEAALKLARKYAHDRVGNHKSGIVAFKNAFHGRTLFT 145
           K+L+  T    ++VF  +SG+ A E A+K+A +Y   +   +K+ ++  +N +HG T  T
Sbjct: 103 KRLVKLTPEGLDKVFLVDSGSVAMEVAIKMALQYWVSKDQPNKNRLLTVRNGYHGDTFAT 162

Query: 146 VSA-----GGQPTYSQD-----FAPLPP---DIRHAAYNDLNSASALIDD---NTCAVIV 189
           ++      G    +S+      FAP P    DI  +   D+NS   ++++   N  AV +
Sbjct: 163 MAVCDPVNGMHSLFSEILTQHYFAPEPEMGFDIE-SDNQDINSLKTMLEEHHNNIAAVTI 221

Query: 190 EP-VQGEGGVIPATKAFLQGLRELCDRHQALLIFDEVQTGVGRTGELYAYMHYGVTPDIL 248
           EP VQG GG+      +L+ LR+LCD +  LLI DE+ TG GRTG+L+A    G+TPDI+
Sbjct: 222 EPIVQGAGGMRFYRPDYLKQLRQLCDEYGVLLIADEIATGFGRTGKLFACEWAGITPDIM 281

Query: 249 TTAKAL-GGGFPIGAMLTTQDYASV-------MTPG--THGTTYGGNPLATAVAGKVLDI 298
           T  K L GG   + A L T D +         + PG   HG T+ GNPLA A A   +D+
Sbjct: 282 TLGKTLTGGHISLAATLATTDVSDTISSNVGDLNPGLLMHGPTFMGNPLACAAAIANIDV 341

Query: 299 INTPEMQNGVRQRHDAFIERLNTLNVRFGMFSEIRGLGLLLGCVLQTEFAGKAKLIAQEA 358
           +     Q+ +++  + F E L  L    G+ ++ R LG +   V++ E +     +  + 
Sbjct: 342 LMNSPWQDNIQRIEEHFTETLLPLKELEGV-ADARVLGAI--GVIELERSDLGPQVQAKG 398

Query: 359 AKAGVMVLIAGGDVVRFAPALNVSDEEIA 387
            + G+  L   G +V   PA N+S   ++
Sbjct: 399 IENGIW-LRPFGRLVYTMPAYNISQSNLS 426


Lambda     K      H
   0.320    0.137    0.413 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 415
Number of extensions: 25
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 408
Length of database: 442
Length adjustment: 32
Effective length of query: 376
Effective length of database: 410
Effective search space:   154160
Effective search space used:   154160
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory