GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Desulfovibrio zosterae DSM 11974

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_027722435.1 H589_RS0113085 aspartate aminotransferase family protein

Query= BRENDA::B1XNF8
         (418 letters)



>NCBI__GCF_000425265.1:WP_027722435.1
          Length = 398

 Score =  313 bits (802), Expect = 6e-90
 Identities = 165/394 (41%), Positives = 247/394 (62%), Gaps = 14/394 (3%)

Query: 24  VMHTYGRFPVAIAKGEGCRLWDTEGKSYLDFVAGIATCTLGHAHPALIQAVSAQIQKLHH 83
           + +TYGR+PV++A+ +G RLWD +GK Y+D ++GI+   +GH    L++ ++ Q +KL  
Sbjct: 15  ICNTYGRYPVSVARAKGSRLWDIDGKEYIDLLSGISVVNIGHCREDLVEVMTEQARKLVQ 74

Query: 84  ISNLYYIPEQGALAQWIVEHSCADKVFFCNSGAEANEAAIKLVRKYAHTVSDFLEQPVIL 143
           +SNL+Y  EQ   A+ ++    AD+VFFCNSGAEANEAAIKL R+Y  T+ +  +   I+
Sbjct: 75  VSNLFYQEEQVECAEKLLTTCGADRVFFCNSGAEANEAAIKLARRYMRTIKE-RDAYEII 133

Query: 144 SAKSSFHGRTLATITATGQP-KYQKHFDPLPDGFAYVPYNDIRALEEAITDIDEGNRRVA 202
           + + SFHGRTLAT+TATGQ    +  F PLP+GF YVP  DI AL+ AITD      + A
Sbjct: 134 TLEGSFHGRTLATLTATGQAGPIKDGFAPLPEGFKYVPTGDIEALKAAITD------KTA 187

Query: 203 AIMLEALQGEGGVRPGDVEYFKAVRRICDENGILLVLDEVQVGVGRTGKYWGYENLGIEP 262
           AIM+E +QGEGG++P   EY KA+  +  EN ILL++DEVQ G+ RTGK+W +++ G+ P
Sbjct: 188 AIMIEMVQGEGGIKPLPAEYVKAIENLVAENDILLIVDEVQSGLCRTGKWWAHQHYGVTP 247

Query: 263 DIFTSAKGLAGGIPIGAMMCKDSCAV-FNPGEHASTFGGNPFSCAAALAVVETLEQENLL 321
            IFTSAK LA G+P+GAM+  ++ A  F PG HA+TFGG       +  V++ + +E + 
Sbjct: 248 HIFTSAKALANGLPMGAMLATEAIAKGFTPGSHATTFGGGALVAKVSSKVLDIMTEEKIA 307

Query: 322 ENVNARGEQLRAGLKTLAEKYP-YFSDVRGWGLINGMEIKADLELTSIEVVKAAMEKGLL 380
           +     G+        + +K+P   + VRG GL+ G+E+  D      EV     +KG +
Sbjct: 308 DRAAEMGDFFITEALKIQKKFPEKINSVRGLGLMLGVELSFD----GSEVFTQLRDKGFI 363

Query: 381 LAPAGPKVLRFVPPLIVSAAEINEAIALLDQTLA 414
           L     K+LR +P L +   ++   +  L++ L+
Sbjct: 364 LNLTKGKILRLLPALTIDKKDLETFLKTLEELLS 397


Lambda     K      H
   0.319    0.136    0.406 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 396
Number of extensions: 14
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 398
Length adjustment: 31
Effective length of query: 387
Effective length of database: 367
Effective search space:   142029
Effective search space used:   142029
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory