GapMind for Amino acid biosynthesis

 

Alignments for a candidate for PPYAT in Azohydromonas australica DSM 1124

Align aromatic-amino-acid aminotransferase (EC 2.6.1.1) (characterized)
to candidate WP_028997211.1 H537_RS0106295 aspartate/tyrosine/aromatic aminotransferase

Query= metacyc::PHETRANTHAUERA-MONOMER
         (404 letters)



>NCBI__GCF_000430725.1:WP_028997211.1
          Length = 394

 Score =  481 bits (1237), Expect = e-140
 Identities = 234/395 (59%), Positives = 295/395 (74%), Gaps = 1/395 (0%)

Query: 1   MFEHVDAYPGDPILSLVETFHHDPRPRKVNLGIGLYYDEEGRIPLLGSVEKAEAALAANP 60
           M +HV A+ GDPILSL E F  D RP K+NL IG+Y DE  R+P + +V +AEA L A  
Sbjct: 1   MLQHVPAFAGDPILSLNEAFQQDARPNKINLSIGVYADESLRLPAMAAVLEAEARLTARR 60

Query: 61  GPRPYLPMEGAADYRAAVQKLLFGPDSAALRAGRIATIQTIGGSGALKVGADLLKRYFPA 120
             RPYLPMEG A +R AV+ L+FG    A+  GR+AT+QTIG SGALK+GA+ ++++ P 
Sbjct: 61  DARPYLPMEGDAAFREAVRALVFGAAHPAVTQGRVATVQTIGSSGALKLGAEFIRQWLPG 120

Query: 121 SEVWVSDPTWDNHRSIFEGAGIEVHDYPYYDAASGGVRFDEMIETLQSLPAQSIVLLHPC 180
           SEVWVSDPTWDNHR+IFE AG+ VH YPY+D A G V FD M++TL+SLPA+S+VLLH C
Sbjct: 121 SEVWVSDPTWDNHRAIFESAGLAVHAYPYHDPARG-VAFDAMLDTLRSLPARSVVLLHGC 179

Query: 181 CHNPTGVDLSTAQWQEVIAVVASRGLIPFLDIAYQGFGDNLDDDAYAARAMADAGVSFFV 240
           CHNPTG DL  AQW  + A+ A RGLIPF+D+AYQGFG+ +D DA   RA+A+AG++ FV
Sbjct: 180 CHNPTGEDLDAAQWGALTALCAQRGLIPFVDLAYQGFGEGVDADAGPVRALAEAGITGFV 239

Query: 241 SNSFSKNLSFYGERCGGLSVVCQDADEAERVLGQLKFTVRRNYSSPPVHGGRVAAAVMND 300
           +NS SKN+  YGERCG LSVVC DA +AE VLGQLK  VRR+YSSPP+H GRVAA V+  
Sbjct: 240 ANSLSKNMGLYGERCGALSVVCGDAGQAEHVLGQLKLAVRRSYSSPPLHAGRVAAQVLGA 299

Query: 301 AGLHEEWVGEVRGMRERIKAMREKLHEVLSSTLPGRDFSYFVKQRGMFSYTGLTPEQVDR 360
             L   W  E+ GMR+RI +MR  LH  L    P +D+SY ++QRGMFSYTGL+  QVDR
Sbjct: 300 PELRAAWAQELDGMRQRILSMRRALHAALVQRRPAQDWSYLLRQRGMFSYTGLSAAQVDR 359

Query: 361 LREEFAVYVVQSGRMCVAGLNRGNVDYVAKAMAAV 395
           LREE A+Y+V+SGR+C+AGLN   +  VA+A+A +
Sbjct: 360 LREEHAIYLVRSGRICLAGLNATCIGTVAQAIAGL 394


Lambda     K      H
   0.320    0.136    0.409 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 465
Number of extensions: 14
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 404
Length of database: 394
Length adjustment: 31
Effective length of query: 373
Effective length of database: 363
Effective search space:   135399
Effective search space used:   135399
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory