GapMind for Amino acid biosynthesis

 

Alignments for a candidate for proB in Thiothrix lacustris DSM 21227

Align δ1-pyrroline-5-carboxylate synthetase (EC 1.2.1.41; EC 2.7.2.11) (characterized)
to candidate WP_038140418.1 Q394_RS0103570 glutamate-5-semialdehyde dehydrogenase

Query= metacyc::AT2G39800-MONOMER
         (717 letters)



>NCBI__GCF_000621325.1:WP_038140418.1
          Length = 412

 Score =  278 bits (710), Expect = 5e-79
 Identities = 154/405 (38%), Positives = 242/405 (59%), Gaps = 9/405 (2%)

Query: 302 ARESSRKLQALSSEDRKKILLDIADALEANVTTIKAENELDVASAQEAGLEESMVARLVM 361
           A+++++ L    +  +   LL IA+ +      +KAEN  D+A+ +E GL+ +M+ RL +
Sbjct: 8   AKQAAQVLANTDTSIKNNALLRIAEVILERADWLKAENAKDLAAGREKGLDAAMLDRLTL 67

Query: 362 TPGKISSLAASVRKLADMEDPIGRVLKKTEVADGLVLEKTSSPLGVLLIVFESRPDALVQ 421
           +   ++ +A  VR++A + DPIG +   +    G+ + K   PLGV+ I++ESRP+  V 
Sbjct: 68  SDKTLAGMAEGVRQVATLADPIGTITDLSYRPSGIQVGKMRVPLGVVGIIYESRPNVTVD 127

Query: 422 IASLAIRSGNGLLLKGGKEARRSNAILHKVITDAIPETVG--GKLIGLV--TSREEIPDL 477
            A+L ++SGN  +L+GG EA  SN  +   +   + E  G     + +V  T R  + +L
Sbjct: 128 AAALCLKSGNATILRGGSEAIHSNQAIAACVRAGL-EAAGLPAACVQVVETTDRAAVGEL 186

Query: 478 LKLDDVIDLVIPRGSNKLVTQIKNTTKIPVLGHADGICHVYVDKACDTDMAKRIVSDAKL 537
           L++   +D+++PRG   L+ ++   ++IPV+ H DGICHVY+D   D D A +I  +AK 
Sbjct: 187 LRMAQYVDVIVPRGGKSLIERVSAESRIPVIKHLDGICHVYIDDQADLDKAVKIAVNAKT 246

Query: 538 DYPAACNAMETLLVHKDLEQNAVLNELIFALQSNGVTLYGGPRASKILN--IPEARS-FN 594
                CNAMETLLV + +    VL  L     + GV L G  +   +L   +P     ++
Sbjct: 247 HRYGVCNAMETLLVAEGVAAQ-VLPALAEEYAAKGVELRGCEQTRALLPACVPATEEDWS 305

Query: 595 HEYCAKACTVEVVEDVYGAIDHIHRHGSAHTDCIVTEDHEVAELFLRQVDSAAVFHNAST 654
            EY A    + VV D+  AI HI+ + S HTD I+TE++  A  FLRQVDS++V  NAST
Sbjct: 306 TEYLAPILAIRVVADMVAAITHINTYSSQHTDAIITENYTRARAFLRQVDSSSVMVNAST 365

Query: 655 RFSDGFRFGLGAEVGVSTGRIHARGPVGVEGLLTTRWIMRGKGQV 699
           RF+DGF +GLGAE+G+ST +IHARGPVG+EGL + ++++ G G +
Sbjct: 366 RFADGFEYGLGAEIGISTDKIHARGPVGLEGLTSQKYVVLGDGHI 410


Lambda     K      H
   0.318    0.135    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 590
Number of extensions: 19
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 717
Length of database: 412
Length adjustment: 35
Effective length of query: 682
Effective length of database: 377
Effective search space:   257114
Effective search space used:   257114
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory