GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Clostridium tyrobutyricum FAM22553

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_039652243.1 PN53_RS05150 aspartate aminotransferase family protein

Query= BRENDA::P73133
         (429 letters)



>NCBI__GCF_000816635.1:WP_039652243.1
          Length = 391

 Score =  317 bits (813), Expect = 3e-91
 Identities = 172/393 (43%), Positives = 251/393 (63%), Gaps = 15/393 (3%)

Query: 34  YVMNTYGRFPIAIARGQGSTLWDTEGKSYLDFVAGIATCTLGHAHPALVRAVSDQIQKLH 93
           Y+MNTYG+F +    G+G  L+DTE K YLD  +GI   +LG+ +   ++AV+DQ + L 
Sbjct: 10  YLMNTYGQFSVVFTHGKGCKLYDTEEKEYLDLTSGIGVSSLGYGNEEWIKAVTDQAKNLA 69

Query: 94  HVSNLYYIPEQGELAKWIVEHSCADRVFFCNSGAEANEAAIKLVRKYAHTVLDFLEQPVI 153
           H+SN++    +  LAK + E S   +VFF NSGAEANE +IKL RKY++       +  I
Sbjct: 70  HISNIFLNIPELTLAKKLTEASGMSKVFFGNSGAEANEGSIKLARKYSYLKYG-KGRSTI 128

Query: 154 LTAKASFHGRTLATITATGQPKYQQYFDPLVPGFDYVPYNDIRSLENKVADLDEGNSRVA 213
           LT   SFHGRT+ T+ ATGQ K+ +YFDP   GF Y    D++SLE  +      +  V 
Sbjct: 129 LTLNKSFHGRTITTLKATGQEKFHKYFDPFTEGFKYTDV-DVKSLEAAI------DPTVC 181

Query: 214 AIFLEPLQGEGGVRPGDLAYFKRVREICDQNDILLVFDEVQVGVGRTGKLWGYEHLGVEP 273
           AI +E +QGEGGV P    +  +V EI  + DIL++FDEVQ G+GRTGKL+GY + GVEP
Sbjct: 182 AIMMEAIQGEGGVYPLPKEFIDKVFEISKKKDILVIFDEVQCGMGRTGKLFGYMNYGVEP 241

Query: 274 DIFTSAKGLAGGVPIGAMMC-KKFCDVFEPGNHASTFGGNPLACAAGLAVLKTIEGDRLL 332
           DI ++AKGLAGG+PIGA++C KK  + F PG+H STFGGNP++ A    V+ T++    L
Sbjct: 242 DIVSTAKGLAGGLPIGAVLCNKKLENTFVPGDHGSTFGGNPISTAGANCVVDTLKKPGFL 301

Query: 333 DNVQARGEQLRSGLAEIKNQYPTLFTEVRGWGLINGLEISAESSLTSVEIVKAAMEQGLL 392
           D+V  +G  +++   +  ++      E+RG GL+ G+++++E    S E+ K A+E G+L
Sbjct: 302 DDVAKKGAFIKNFFKKASSKN---VLEIRGIGLMLGIQLNSEK---SSEVQKKALENGIL 355

Query: 393 LAPAGPKVLRFVPPLVVTEAEIAQAVEILRQAI 425
           +  AG  V+R +PPLV++E E+   +  L + I
Sbjct: 356 VLTAGSSVVRLLPPLVISEQELESVLSSLVKII 388


Lambda     K      H
   0.320    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 419
Number of extensions: 32
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 429
Length of database: 391
Length adjustment: 31
Effective length of query: 398
Effective length of database: 360
Effective search space:   143280
Effective search space used:   143280
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory