GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Sulfurihydrogenibium azorense Az-Fu1

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate WP_012674034.1 SULAZ_RS07315 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>NCBI__GCF_000021545.1:WP_012674034.1
          Length = 411

 Score =  314 bits (804), Expect = 6e-90
 Identities = 171/403 (42%), Positives = 262/403 (65%), Gaps = 13/403 (3%)

Query: 340 VVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENPD 399
           ++V K+GG ++ ++E+++ VA KI K    G + VVV SAM   TD LI L + +   P+
Sbjct: 3   LIVQKYGGTSVGNIERIKNVARKIKKAVDEGNQVVVVSSAMTGETDRLIGLTRELSNRPN 62

Query: 400 PRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDIIS 459
           PRE D++++TGE  ++ L++IAL++ G  AIS TG Q+ IITD  +  ARI  I+T  I 
Sbjct: 63  PREQDMVVATGEQVAIGLVAIALQELGVPAISLTGWQVPIITDNVHTKARIKKIDTHRIR 122

Query: 460 RYLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTAD 519
           ++L +  + +VAGFQG++E GDITTLGRGGSD +A+ALA +L AD+CE+Y DV GV+TAD
Sbjct: 123 KHLDEGKVVIVAGFQGVSEDGDITTLGRGGSDTSAVALAAALKADVCEIYTDVPGVFTAD 182

Query: 520 PRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNAHKETRGTLIW- 578
           PRIV++AR I  +S+EEM+E++  G++V+Q R+ EF  KYGVK+ ++++  +  GT I  
Sbjct: 183 PRIVENARKIPVISYEEMMEMASLGSKVMQIRSVEFGAKYGVKIHVRSSFNDEEGTWIME 242

Query: 579 EGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNIDMIIQGMKSGEY 638
           E  ++E  +VR ++ E   +++ +  VPDKPGVAA++ + L    + +DMI+Q +    +
Sbjct: 243 ENEEMEKVVVRGISHELKESRITVVRVPDKPGVAAKLFKALGDKNIVVDMIVQNVSHKGF 302

Query: 639 NTVAFIVPESQLGKLDIDLLK--TRSEAKEIIIE-----KGLAKVSIVGVNLTSTPEISA 691
             ++F V      K D D  +   R  AKE+  E       +AK+S+VG+ + +   ++ 
Sbjct: 303 TDISFTV-----NKTDADYAEEIAREVAKEVGAEDVERNDKIAKISVVGLGMKTHSGVAG 357

Query: 692 TLFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRF 734
            +FE L  EGINI  IS S  +IS +ID KY E AV+A+H  F
Sbjct: 358 KMFEVLYKEGINIYAISTSEIKISCLIDEKYAELAVRALHEAF 400


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 726
Number of extensions: 39
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 411
Length adjustment: 36
Effective length of query: 703
Effective length of database: 375
Effective search space:   263625
Effective search space used:   263625
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory