GapMind for Amino acid biosynthesis

 

Alignments for a candidate for serA in Stenotrophomonas chelatiphaga DSM 21508

Align phosphoglycerate dehydrogenase (EC 1.1.1.95) (characterized)
to candidate WP_057508923.1 ABB28_RS12365 phosphoglycerate dehydrogenase

Query= BRENDA::A4VGK3
         (468 letters)



>NCBI__GCF_001431535.1:WP_057508923.1
          Length = 414

 Score =  506 bits (1304), Expect = e-148
 Identities = 258/413 (62%), Positives = 318/413 (76%), Gaps = 2/413 (0%)

Query: 58  MQMSQTSLDKSKIKFLLLEGVHQNAVDTLKAAGYTNIEDLKTALSGDELKEKIADAHFIG 117
           M   +TS  K  I+ LLLEGV Q AVD   AAGY+ IE    AL  DELK +IADAH +G
Sbjct: 1   MSPKKTSYPKQDIRVLLLEGVSQTAVDVFTAAGYSQIELHSKALPEDELKARIADAHIVG 60

Query: 118 IRSRTQLTEEVFDCAKKLIAVGCFCIGTNQVDLNAARERGIAVFNAPYSNTRSVAELVLA 177
           IRSR+QL+ EV   AK++IAVGCFCIGTNQVDL+AA   GI VFNAPYSNTRSVAELV+A
Sbjct: 61  IRSRSQLSAEVLAEAKRVIAVGCFCIGTNQVDLDAAELAGIPVFNAPYSNTRSVAELVIA 120

Query: 178 EAILLLRGIPEKNASCHRGGWIKSAANSFEIRGKKLGIIGYGSIGTQLSVLAEALGMQVF 237
           EAI+L RGIP+KNA CHRGGW KSAA S E+RGK LGIIGYG IGTQ+ VLAE+LG+QV 
Sbjct: 121 EAIMLTRGIPQKNAECHRGGWSKSAAGSHEVRGKTLGIIGYGHIGTQVGVLAESLGLQVI 180

Query: 238 FYDVVTKLPLGNATQIGSLYELLGMCDIVSLHVPELPSTQWMIGEKEIRAMKKGAILINA 297
           F+DV  KL LGNA    SL +LL   DI++LHVPE P+TQWMIG  E+  M++GA +INA
Sbjct: 181 FHDVEAKLALGNARAAVSLDDLLERSDIITLHVPETPATQWMIGATELAKMRRGAHVINA 240

Query: 298 ARGTVVELDHLAAAIKDEHLIGAAIDVFPVEPKSNDEEFESPLRGLDRVILTPHIGGSTA 357
           ARGT+V++  L AA+   H+ GAA+DVFPVEPK N + FESPL   D VILTPH+GGST 
Sbjct: 241 ARGTIVDIAALDAALGSGHIGGAALDVFPVEPKGNGDVFESPLTAHDNVILTPHVGGSTL 300

Query: 358 EAQANIGLEVAEKLVKYSDNGTSVSSVNFPEVALPSHPGKHRLLHIHQNIPGVMSEINKV 417
           EAQ NIG+EVA KLV+YSDNG+++++VNFPEV LP H G  RLLHIH+N+PGV+S++N++
Sbjct: 301 EAQDNIGIEVAAKLVRYSDNGSTLTAVNFPEVTLPEHDGSLRLLHIHRNVPGVLSKVNEI 360

Query: 418 FADNGINICGQFLQTNEKVGYVVIDVDKEYSDLAL--EKLQHVNGTIRSRVLF 468
           F+ + +NI GQFL+T+ KVGYVVID+       A   ++L  + GT+R+RVL+
Sbjct: 361 FSRHNVNIDGQFLRTDAKVGYVVIDITASVEQAAAVRDELAAIPGTLRTRVLY 413


Lambda     K      H
   0.318    0.135    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 545
Number of extensions: 22
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 468
Length of database: 414
Length adjustment: 32
Effective length of query: 436
Effective length of database: 382
Effective search space:   166552
Effective search space used:   166552
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory