GapMind for Amino acid biosynthesis

 

Alignments for a candidate for ilvE in Hydrogenophaga taeniospiralis NBRC 102512

Align aromatic-amino-acid transaminase (EC 2.6.1.57) (characterized)
to candidate WP_068168339.1 HTA01S_RS06765 aspartate/tyrosine/aromatic aminotransferase

Query= BRENDA::P04693
         (397 letters)



>NCBI__GCF_001592305.1:WP_068168339.1
          Length = 402

 Score =  388 bits (997), Expect = e-112
 Identities = 201/401 (50%), Positives = 264/401 (65%), Gaps = 5/401 (1%)

Query: 1   MFQKVDAYAGDPILTLMERFKEDPRSDKVNLSIGLYYNEDGIIPQLQAVAEAEARLNAQP 60
           +F  V+    DPIL L E+F  D   +KVNL +G+Y++++G +P LQ V  AE  +  +P
Sbjct: 3   LFTAVEMAPRDPILGLNEQFAADTNPNKVNLGVGVYFDDNGKLPLLQCVQAAEKAMMDKP 62

Query: 61  HGASLYLPMEGLNCYRHAIAPLLFGADHPVLKQQRVATIQTLGGSGALKVGADFLKRYFP 120
                YLP++G+  Y  A+  L+FGAD  V+K  RVAT+Q +GG+G LK+GADFLK+  P
Sbjct: 63  TARG-YLPIDGIAAYDAAVKGLVFGADSDVVKSGRVATVQAIGGTGGLKIGADFLKKISP 121

Query: 121 ESGVWVSDPTWENHVAIFAGAGFEVSTYPWYDEATNG----VRFNDLLATLKTLPARSIV 176
           ++ V +SDP+WENH A+F  AGF V TYP++D++ NG    + F+ +LA L      +IV
Sbjct: 122 DAKVLISDPSWENHRALFTNAGFTVETYPYFDQSANGGLGGINFDGMLAALNAAAPGTIV 181

Query: 177 LLHPCCHNPTGADLTNDQWDAVIEILKARELIPFLDIAYQGFGAGMEEDAYAIRAIASAG 236
           LLH CCHNPTG D+T  QWD VI +++AR L  FLD+AYQGFG G+ ED   I    +AG
Sbjct: 182 LLHACCHNPTGYDITPAQWDQVIAVVQARNLTAFLDMAYQGFGYGIAEDGAVIGKFVAAG 241

Query: 237 LPALVSNSFSKIFSLYGERVGGLSVMCEDAEAAGRVLGQLKATVRRNYSSPPNFGAQVVA 296
           L   VS SFSK FSLYGERVG LSV+    E   RVL QLK  +R NYS+PP  G  +VA
Sbjct: 242 LNIFVSTSFSKSFSLYGERVGALSVVGSSKEETDRVLSQLKIAIRTNYSNPPTHGGAIVA 301

Query: 297 AVLNDEALKASWLAEVEEMRTRILAMRQELVKVLSTEMPERNFDYLLNQRGMFSYTGLSA 356
           AVLN+  L+A W  E+ EMR RI AMRQ+LV  L      ++  ++  Q GMFSY+GLS 
Sbjct: 302 AVLNNPELRALWEQELGEMRVRIKAMRQKLVDGLKAAGVAKDMSFITTQIGMFSYSGLSK 361

Query: 357 AQVDRLREEFGVYLIASGRMCVAGLNTANVQRVAKAFAAVM 397
            Q+ RLR EFGVY   +GRMCVA LN+ N+  V +A A V+
Sbjct: 362 DQMVRLRSEFGVYGTDTGRMCVAALNSKNIDYVCQAIAKVI 402


Lambda     K      H
   0.320    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 421
Number of extensions: 18
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 402
Length adjustment: 31
Effective length of query: 366
Effective length of database: 371
Effective search space:   135786
Effective search space used:   135786
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 10 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory