Align Homocysteine/cysteine synthase; O-acetylserine/O-acetylhomoserine sulfhydrylase; OAS-OAH SHLase; OAS-OAH sulfhydrylase; EC 2.5.1.47; EC 2.5.1.49 (characterized)
to candidate BPHYT_RS13720 BPHYT_RS13720 O-acetylhomoserine aminocarboxypropyltransferase
Query= SwissProt::P06106 (444 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS13720 BPHYT_RS13720 O-acetylhomoserine aminocarboxypropyltransferase Length = 450 Score = 338 bits (866), Expect = 3e-97 Identities = 181/434 (41%), Positives = 270/434 (62%), Gaps = 14/434 (3%) Query: 3 SHFDTVQLHAGQENPGDNAHRSRAVPIYATTSYVFENSKHGSQLFGLEVPGYVYSRFQNP 62 + FDT+ LHAG D +RA PIY TTS+ F +S H + LF +E G+VYSR NP Sbjct: 4 NRFDTLALHAGAAP--DPTTGARATPIYQTTSFSFRDSDHAAALFNMERAGHVYSRISNP 61 Query: 63 TSNVLEERIAALEGGAAALAVSSGQAAQTLAIQGLAHTGDNIVSTSYLYGGTYNQFKISF 122 T V EER+AALE GA A+ +SGQAA LAI L G +IV++S LYGG++N + Sbjct: 62 TVAVFEERVAALENGAGAIGTASGQAALHLAIATLMGAGSHIVASSALYGGSHNLLHYTL 121 Query: 123 KRFGIEARFVEGDNPEEFEKVFDERTKAVYLETIGNPKYNVPDFEKIVAIAHKHGIPVVV 182 +RFGIE FV+ + + + T+ ++ ET+GNP +V D + IAH+H +P++V Sbjct: 122 RRFGIETTFVKPGDLDAWRAALRPNTRLLFGETLGNPGLDVLDIAAVAQIAHEHRVPLLV 181 Query: 183 DNTFGAGGYFCQPIKYGADIVTHSATKWIGGHGTTIGGIIVDSGKFPWKDYPEKFPQFSQ 242 D+TF Y +P ++GAD V HSATK++GGHGTTIGG++VD G F + + +FP+F++ Sbjct: 182 DSTF-TTPYLLKPFEHGADFVYHSATKFLGGHGTTIGGVLVDGGTFDF-EASGRFPEFTE 239 Query: 243 PAEGYHGTIYNEAYGNLAYIVHVRTELLRDLGPLMNPFASFLLLQGVETLSLRAERHGEN 302 P +G+HG +++E +++ R E LRD G ++P A++ LLQG+ETL LR ERH N Sbjct: 240 PYDGFHGMVFSEESTVAPFLLRARREGLRDFGACLHPQAAWQLLQGIETLPLRMERHVAN 299 Query: 303 ALKLAKWLEQSPYVSWVSYPGLASHSHHENAKKYLSNGFGGVLSFGVKDLPNADKETDPF 362 ++ ++L V V+YP L +H H AK+ L G G V SF ++ Sbjct: 300 TRRVVEFLAAHAAVESVAYPELPTHPDHALAKRLLPRGAGAVFSFNLRG----------D 349 Query: 363 KLSGAQVVDNLKLASNLANVGDAKTLVIAPYFTTHKQLNDKEKLASGVTKDLIRVSVGIE 422 + +G ++ L L S+LANVGDA++LVI P TTH +++ A+G+ + IR+S+G+E Sbjct: 350 RAAGRSFIEALSLFSHLANVGDARSLVIHPASTTHFRMDAAALAAAGIAEGTIRLSIGLE 409 Query: 423 FIDDIIADFQQSFE 436 DD+I D +++ + Sbjct: 410 DPDDLIDDLKRALK 423 Lambda K H 0.317 0.136 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 505 Number of extensions: 17 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 444 Length of database: 450 Length adjustment: 33 Effective length of query: 411 Effective length of database: 417 Effective search space: 171387 Effective search space used: 171387 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory