GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Paraburkholderia bryophila 376MFSha3.1

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate H281DRAFT_04726 H281DRAFT_04726 serine hydroxymethyltransferase

Query= BRENDA::B4ECY9
         (415 letters)



>FitnessBrowser__Burk376:H281DRAFT_04726
          Length = 415

 Score =  774 bits (1998), Expect = 0.0
 Identities = 390/414 (94%), Positives = 400/414 (96%)

Query: 1   MFDRAQSTIANVDPEIFAAIEQENRRQEDHIELIASENYTSPAVMAAQGSQLTNKYAEGY 60
           MFDRAQSTIANVDPE++  IEQENRRQE+HIELIASENYTSPAVMAAQGSQLTNKYAEGY
Sbjct: 1   MFDRAQSTIANVDPELWKVIEQENRRQEEHIELIASENYTSPAVMAAQGSQLTNKYAEGY 60

Query: 61  PGKRYYGGCEYVDVVEQLAIDRVKQLFGAEAANVQPNSGSQANQGVFFAMLKPGDTIMGM 120
           PGKRYYGGCEYVDV EQLAIDRVKQLFGAEAANVQPNSGSQANQGVFFAMLKPGDTIMGM
Sbjct: 61  PGKRYYGGCEYVDVAEQLAIDRVKQLFGAEAANVQPNSGSQANQGVFFAMLKPGDTIMGM 120

Query: 121 SLAHGGHLTHGSPVNMSGKWFNVVSYGLNENEDIDYDAAEKLANEHKPKLIVAGASAFAL 180
           SLAHGGHLTHGSPVNMSGKWFNVVSYGLNE EDIDYDAAEKLA EHKPKLIVAGASAFAL
Sbjct: 121 SLAHGGHLTHGSPVNMSGKWFNVVSYGLNEAEDIDYDAAEKLAQEHKPKLIVAGASAFAL 180

Query: 181 KIDFERLAKIAKSVGAYLMVDMAHYAGLIAAGVYPNPVPHADFVTTTTHKSLRGPRGGVI 240
           +IDFERL+KIAKSVGAY MVDMAHYAGLIAAGVYPNPVPHADFVTTTTHKSLRGPRGGVI
Sbjct: 181 RIDFERLSKIAKSVGAYFMVDMAHYAGLIAAGVYPNPVPHADFVTTTTHKSLRGPRGGVI 240

Query: 241 LMKAEYEKPINSAIFPGIQGGPLMHVIAAKAVAFKEALSPEFKEYQQKVVENARVLAETL 300
           LMKAE+EK INSAIFPGIQGGPLMHVIA KAVAFKEALSPEFK YQQ+VVENARVLAETL
Sbjct: 241 LMKAEFEKQINSAIFPGIQGGPLMHVIAGKAVAFKEALSPEFKAYQQQVVENARVLAETL 300

Query: 301 VKRGLRIVSGRTESHVMLVDLRAKHITGKAAEAALGAAHITVNKNAIPNDPEKPFVTSGI 360
           VKRGLRIVSGRTESHVMLVDLRAK ITGKAAEAALGAAHITVNKNAIPNDPEKPFVTSGI
Sbjct: 301 VKRGLRIVSGRTESHVMLVDLRAKKITGKAAEAALGAAHITVNKNAIPNDPEKPFVTSGI 360

Query: 361 RLGSPAMTTRGFGPAEAEQVGNLIADVLENPEDAATIERVRAQVAELTKRFPVY 414
           RLGSPAMTTRGFG  EAEQVGNLIADVL+NPED ATI+RVR QVAELT+RFPVY
Sbjct: 361 RLGSPAMTTRGFGTKEAEQVGNLIADVLDNPEDTATIDRVRGQVAELTQRFPVY 414


Lambda     K      H
   0.316    0.132    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 680
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 415
Length of database: 415
Length adjustment: 31
Effective length of query: 384
Effective length of database: 384
Effective search space:   147456
Effective search space used:   147456
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory