Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate H281DRAFT_02329 H281DRAFT_02329 dihydroxyacid dehydratase
Query= curated2:A8AB39 (552 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_02329 H281DRAFT_02329 dihydroxyacid dehydratase Length = 577 Score = 395 bits (1014), Expect = e-114 Identities = 224/546 (41%), Positives = 332/546 (60%), Gaps = 17/546 (3%) Query: 15 HRALWRASGLIDEELR-RPLIGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGT 73 HR+ + G+ +E RP+IG+ N+W+E+ P + H ++AE VK G+ AGG PLEF Sbjct: 27 HRSWMKNQGIPHDEFDGRPVIGICNTWSELTPCNAHFRELAEYVKKGVHEAGGLPLEFPV 86 Query: 74 IAVCDGIAMGHEGMR-YSLPSREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAAR 132 ++ +G +R ++ R + + VE + + +D V+++ CDK TP L+ AA Sbjct: 87 MS------LGETNLRPTAMLFRNLASMDVEESIRGNPMDGVILLVGCDKTTPALLMGAAS 140 Query: 133 LEVPVILINGGPMMPGVYGKERIDFKDLMERMNVLIKEGRT--EELRKLEESALPGPGSC 190 +P + ++GGPM+ G + + I + +M+ ++ G EE + E G C Sbjct: 141 CNLPALAVSGGPMLNGRFRGKHIGSGTGVWQMSEEVRAGSMTQEEFTEAESCMNRSRGHC 200 Query: 191 AGLFTANTMNMLSEAMGLMLPGASTVPAVEARRLWYAKLTGMRIVKMVEEGLTPDKILTR 250 + TA+TM + E++G+ LP + +PAV+ARR A L G RIV MV E LT DKILTR Sbjct: 201 MTMGTASTMASMVESLGMGLPHNAAIPAVDARRQVLAHLAGRRIVDMVREDLTMDKILTR 260 Query: 251 KALENAIAVDMALGGSTNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFV 310 +A ENAI + A+GGSTN+V+HL ALA +G++L LE + E+ VP + ++ PSG + + Sbjct: 261 QAFENAIRTNAAIGGSTNAVVHLIALAKRIGVELSLEDW-ELGSNVPCLVNLQPSGEYLM 319 Query: 311 VDLDRAGGIPAVLKELGEAGLIHKDALTVTGKTVWENVKDAAVLDREVIRPLDNPYSPFG 370 D AGG+PAVLK+LGE GL+H++ALTV GKT+W+NV++A D +VI P+ P Sbjct: 320 EDFYYAGGLPAVLKQLGEQGLLHREALTVNGKTIWDNVRNAPNHDEKVITTFAEPFKPKA 379 Query: 371 GLAILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAI--RGGEIEPGTVIVI 428 G+A+LKG+LAPNGAV+K SA EL K +G A VF+ E+ I +I+ ++V+ Sbjct: 380 GIAVLKGNLAPNGAVIKPSAATAELLKHRGRAVVFENIEELHAKIDDESLDIDENCIMVL 439 Query: 429 RYEGPRGGPGMREM--LTATAAVMALGLGDKVALVTDGRFSGATRGPAIGHVSPEAAAGG 486 + GP+G PG E+ + V+ G+ D V ++DGR SG G + HVSPEAAAGG Sbjct: 440 KGAGPKGYPGFAEVGNMPLPKKVLQKGITDMVR-ISDGRMSGTAYGAVVLHVSPEAAAGG 498 Query: 487 PIALVQDGDEIVIDIEKRRLDLLVDEKELEERRARWKPKVKPLRRGILRRYAKMALSADK 546 P+A VQ GD I +D+E RRL L V + EL RRA W+ P +RG + Y + L AD+ Sbjct: 499 PLAFVQTGDMIELDVEARRLHLDVSDDELARRRAAWQAPESP-KRGYYKLYVEHVLQADQ 557 Query: 547 GGALEY 552 G L++ Sbjct: 558 GADLDF 563 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 824 Number of extensions: 37 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 577 Length adjustment: 36 Effective length of query: 516 Effective length of database: 541 Effective search space: 279156 Effective search space used: 279156 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory