Align acetolactate synthase (EC 2.2.1.6) (characterized)
to candidate H281DRAFT_03007 H281DRAFT_03007 acetolactate synthase-1/2/3 large subunit
Query= BRENDA::P9WG39 (547 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_03007 H281DRAFT_03007 acetolactate synthase-1/2/3 large subunit Length = 587 Score = 327 bits (837), Expect = 1e-93 Identities = 204/564 (36%), Positives = 294/564 (52%), Gaps = 29/564 (5%) Query: 5 TAPAQTMHAGRLIARRLKASGIDTVFTLSGGHLFSIYDGCREEGIRLIDTRHEQTAAFAA 64 T A + G L+A+ LK G+DT+FTL GGH+ IYDGC +EGIR+ID RHEQ AA AA Sbjct: 25 TRNAGVVSGGHLVAKALKNEGVDTIFTLCGGHIIDIYDGCVDEGIRIIDVRHEQVAAHAA 84 Query: 65 EGWSKVTRVPGVAALTAGPGITNGMSAMAAAQQNQSPLVVLGGRAPALRWGMGSLQEIDH 124 +G+++ T G TAGPG TN ++ +A A +++SP++ +GG+ + MGSLQ++ H Sbjct: 85 DGYARQTGKLGCVVTTAGPGCTNAVTGIATAFRSESPILHIGGQGALTQHKMGSLQDLPH 144 Query: 125 VPFVAPVARFAATAQSAENAGLLVDQALQAAVSAPSGVAFVDFPMDHAFSMSSDNGRPGA 184 V +AP+ +FAA+ S E ++ A + + G A+++ P D D R A Sbjct: 145 VDIMAPITKFAASVSSTERVADMISMAARECFNGAPGPAYLEIPRD-VLDREVDLSR--A 201 Query: 185 LTELP----AGPTPAGDA--LDRAAGLLSTAQRPVIMAGTNVWW--GHAEA-ALLRLVEE 235 + P A GD +++ A +L ++RP I+ G VW GH EA ALLR ++ Sbjct: 202 VVPQPGHYRASTKSIGDPRDIEKLADILVNSERPAILYGQQVWTARGHEEAIALLRGLD- 260 Query: 236 RHIPVLMNGMARGVVPADHRLAFSRARSKALGEADVALIVGVPMDFRLGFGGVFGSTTQL 295 IP NG +RG++P F R RS+A ADV ++VG P DFR+G+G L Sbjct: 261 --IPGYFNGASRGLLPPGDPHHFDRTRSQAFANADVLIVVGTPFDFRMGYGKRISKELTL 318 Query: 296 IVADRVEPAREHPRPVAAGLYGD----LTATLSALAGSGGTD----HQGWIEELATAETM 347 + D R + GL GD L A L A +G D + W+ +L AE Sbjct: 319 VQIDMDYRTVGKNRDIDLGLVGDPGAILAAVLQAASGRLKDDKRQARRKWMAQLQDAEAT 378 Query: 348 ARDLEKAELVDDRIPLHPMRVYAELAALLERDALVVIDAGDFGSYAGRMIDSYLPGCWLD 407 A + + P+HP RV EL L D + + D GD + + + + PG W+D Sbjct: 379 ATEKLMPLFKSNSTPIHPYRVAYELNEFLADDTVYIGDGGDVVTISAQAVRPRRPGQWMD 438 Query: 408 SGPFGCLGSGPGYALAAKLARPQRQVVLLQGDGAFGFSGMEWDTLVRHNVAVVSVIGNNG 467 G G LG G G+ALAAK+A PQ++V+ GDG+FG + + +T R ++VIGNN Sbjct: 439 PGALGSLGVGTGFALAAKIAHPQKEVLCYYGDGSFGMTAFDMETANRFGAPYLAVIGNNS 498 Query: 468 IWGLEKHPMEALYG--YSVVAELRPGTRYDEVVRALGGHGELVSVPAELRPALERA---- 521 ++ A YG V L + + LGGHGE V PA++ AL+RA Sbjct: 499 AMNQIRYGQLAKYGDERGNVGNLLSDVPFSKFAEMLGGHGEEVRDPAQIAGALQRAREAI 558 Query: 522 FASGLPAVVNVLTDPSVAYPRRSN 545 +G AVVN+ DP P N Sbjct: 559 HRTGRSAVVNIWVDPREYAPGTKN 582 Lambda K H 0.319 0.135 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 807 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 547 Length of database: 587 Length adjustment: 36 Effective length of query: 511 Effective length of database: 551 Effective search space: 281561 Effective search space used: 281561 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory