Align O-acetylhomoserine aminocarboxypropyltransferase (EC 2.5.1.49) (characterized)
to candidate H281DRAFT_04486 H281DRAFT_04486 O-acetylhomoserine sulfhydrylase
Query= BRENDA::L7N4M1 (449 letters) >lcl|FitnessBrowser__Burk376:H281DRAFT_04486 H281DRAFT_04486 O-acetylhomoserine sulfhydrylase Length = 465 Score = 455 bits (1170), Expect = e-132 Identities = 227/425 (53%), Positives = 299/425 (70%), Gaps = 3/425 (0%) Query: 18 FETKQIHAGQHPDPTTNARALPIYATTSYTFDDTAHAAALFGLEIPGNIYTRIGNPTTDV 77 F+T +HAG PDP T ARA PIY TTS++F D+ HAAALF +E G++Y+RI NPT V Sbjct: 12 FDTLALHAGAAPDPATGARATPIYQTTSFSFRDSDHAAALFNMERAGHVYSRISNPTVAV 71 Query: 78 VEQRIAALEGGVAALFLSSGQAAETFAILNLAGAGDHIVSSPRLYGGTYNLFHYSLAKLG 137 E+R+AALE G A+ +SGQAA AI+ L G G HIV+S LYGG++NL HY+L + G Sbjct: 72 FEERVAALENGAGAIGTASGQAALHLAIVTLMGRGSHIVASSALYGGSHNLLHYTLRRFG 131 Query: 138 IEVSFVDDPDDLDTWQAAVRPNTKAFFAETISNPQIDLLDTPAVSEVAHRNGVPLIVDNT 197 IE +FV P D+D W+AA+RPNT+ F ET+ NP +D+LD V+++AH + VPL+VD+T Sbjct: 132 IETTFVK-PGDIDAWRAALRPNTRLLFGETLGNPGLDVLDVATVAQIAHEHRVPLLVDST 190 Query: 198 IATPYLIQPLAQGADIVVHSATKYLGGHGAAIAGVIVDGGNFDW-TQGRFPGFTTPDPSY 256 TPYL++P GAD V HSATK+LGGHG I GV+VDGG FD+ GRFP FT P + Sbjct: 191 FTTPYLLKPFEHGADFVYHSATKFLGGHGTTIGGVLVDGGTFDFDASGRFPEFTEPYEGF 250 Query: 257 HGVVFAELGPPA-FALKARVQLLRDYGSAASPFNAFLVAQGLETLSLRIERHVANAQRVA 315 HG++F+E A F L+AR + LRD+G+ P A+ + QG+ETL LR+ERHVAN +RV Sbjct: 251 HGIIFSEESTAAPFLLRARREGLRDFGACLHPQAAWQLLQGIETLPLRMERHVANTRRVV 310 Query: 316 EFLAARDDVLSVNYAGLPSSPWHERAKRLAPKGTGAVLSFELAGGIEAGKAFVNALKLHS 375 EFLA V +V Y LP+ P H AKRL P+G GAV SF L G AG++F+ AL L S Sbjct: 311 EFLAGHAAVEAVAYPELPTHPDHALAKRLLPRGAGAVFSFNLRGDRAAGRSFIEALSLFS 370 Query: 376 HVANIGDVRSLVIHPASTTHAQLSPAEQLATGVSPGLVRLAVGIEGIDDILADLELGFAA 435 H+AN+GD RSLVIHPASTTH ++ A A G++ G +RL++G+E DD++ DL+ G A Sbjct: 371 HLANVGDARSLVIHPASTTHFRMDAAALAAAGIAEGTIRLSIGLEDPDDLIDDLKRGLKA 430 Query: 436 ARRFS 440 A++ S Sbjct: 431 AQKAS 435 Lambda K H 0.318 0.134 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 634 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 449 Length of database: 465 Length adjustment: 33 Effective length of query: 416 Effective length of database: 432 Effective search space: 179712 Effective search space used: 179712 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory