GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Cupriavidus basilensis 4G11

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate RR42_RS35305 RR42_RS35305 aspartate aminotransferase

Query= SwissProt::Q2RK33
         (390 letters)



>FitnessBrowser__Cup4G11:RR42_RS35305
          Length = 401

 Score =  178 bits (451), Expect = 3e-49
 Identities = 126/392 (32%), Positives = 190/392 (48%), Gaps = 22/392 (5%)

Query: 6   RIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPENHRYP 65
           R+  + P   +   +++ E R  G D+I L  G+PD  TP+H I +    A      RY 
Sbjct: 7   RLNRIKPSPSSMAGQRVRELRAAGRDVIGLTAGEPDFETPAH-IREAAWRAMQAGKTRYT 65

Query: 66  TSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINLVPDPG 125
              G    R A A  ++R  G+D     E++   G+K+ I +  +C V  GD  +VP P 
Sbjct: 66  DVGGTAELRHAAAQKFKRENGLDY-AASEIIVSTGAKQVIFNALMCTVQQGDEVIVPAPY 124

Query: 126 YPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGAV---A 182
           +  Y   TL AGG   F+   A NGF      +   ++ R + + +N PNNP+GA     
Sbjct: 125 WVSYPDITLFAGGVPVFVACQAENGFKLTPEELERAISARTRWLILNSPNNPSGAAYTRT 184

Query: 183 DLKFFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQA-PGAKEVGIEFNSVSKPYN 241
           +L    EV+E  R   + V  D  Y  +TYDG    +  QA P  K   +  N VSK Y 
Sbjct: 185 ELVAIAEVLE--RHPHVWVMTDDIYEHLTYDGAAFVTLAQAAPSLKARTLTINGVSKAYA 242

Query: 242 MTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQERR 301
           MTGWR+G+A   A +I+A+ +++S   SGA    Q A IAAL GPQ+ +A  + V+Q RR
Sbjct: 243 MTGWRIGYAGAPAPLIKAMVKLQSQSTSGANAVAQAAAIAALDGPQDFIAANKAVFQARR 302

Query: 302 DIIVEGFNSL-GWHLEKPKATFYVWAP--------VPRG---YTSASFAEMVLEKAGVII 349
           D +V     + G H + P   FYV+A          P G    +S  +   VL+   + +
Sbjct: 303 DRVVAALGQVDGIHCQAPAGAFYVFASCEALIGARTPHGSVIRSSDDWVNWVLDSQDLAV 362

Query: 350 TPGNGYGNYGEGYFRIALTISKERMQEAIERL 381
             G+ YG   + +FR++   S  ++ E   R+
Sbjct: 363 LQGSAYG--VDTHFRLSFAASMAQLDEGCRRI 392


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 348
Number of extensions: 15
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 401
Length adjustment: 31
Effective length of query: 359
Effective length of database: 370
Effective search space:   132830
Effective search space used:   132830
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory