GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Cupriavidus basilensis 4G11

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate RR42_RS06370 RR42_RS06370 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>FitnessBrowser__Cup4G11:RR42_RS06370
          Length = 416

 Score =  302 bits (774), Expect = 2e-86
 Identities = 170/414 (41%), Positives = 261/414 (63%), Gaps = 14/414 (3%)

Query: 339 SVVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENP 398
           +++V K+GG ++   E+++ VA+++ K  ++G + VVV SAM   T+ L+ LAK I   P
Sbjct: 2   ALIVHKYGGTSMGSPERIKNVAKRVAKWHRAGHRVVVVPSAMSGETNRLLGLAKEISAQP 61

Query: 399 DPRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDII 458
            PRELD+L +TGE  S AL++IAL+  G  AIS+TG Q+ + TD  +  ARI  I+ + I
Sbjct: 62  SPRELDMLAATGEQASSALLAIALQSEGVDAISYTGWQVPVKTDSSHTKARIESIDDERI 121

Query: 459 SRYLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTA 518
              L    + VV GFQGI + G+ITTLGRGGSD +A+A+A ++ A+ C +Y DVDGVYT 
Sbjct: 122 LADLDAGRVVVVTGFQGIDDNGNITTLGRGGSDTSAVAIAAAIEAEECLIYTDVDGVYTT 181

Query: 519 DPRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNA---------H 569
           DPR+V+DAR + ++++EEM+E++  G++VLQ R+ EFA KY VK  + ++          
Sbjct: 182 DPRVVEDARRLDQITFEEMLEMASLGSKVLQIRSVEFAGKYRVKTRVLSSLTDPLMPLEQ 241

Query: 570 KETRGTLIW--EGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNID 627
           +   GTLI   E +++E  ++  + F    AK+ +  VPDKPG+A +I+  ++   +++D
Sbjct: 242 EMHSGTLITFEENSEMEAAVISGIAFARDEAKITVLGVPDKPGIAYQILGPVADANIDVD 301

Query: 628 MIIQGMKSGEYNTVAFIVPESQLGK---LDIDLLKTRSEAKEIIIEKGLAKVSIVGVNLT 684
           MIIQ           F VP  +  +   +  D +K    A  +  +  ++KVS+VGV + 
Sbjct: 302 MIIQNQSVDGKTDFTFTVPRGEYQRALAILNDSVKAHIGAASVSGDPKVSKVSVVGVGMR 361

Query: 685 STPEISATLFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELDR 738
           S   I++ +F TL+ EGINI MIS S  +ISV+ID KY+E AV+A+H  FELD+
Sbjct: 362 SHVGIASKMFRTLSEEGINIQMISTSEIKISVLIDEKYMELAVRALHKVFELDQ 415


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 703
Number of extensions: 34
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 416
Length adjustment: 36
Effective length of query: 703
Effective length of database: 380
Effective search space:   267140
Effective search space used:   267140
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory