GapMind for Amino acid biosynthesis

 

Alignments for a candidate for metZ in Cupriavidus basilensis 4G11

Align O-acetylhomoserine sulfhydrylase protein; EC 2.3.1.31 (characterized, see rationale)
to candidate RR42_RS32610 RR42_RS32610 O-acetylhomoserine aminocarboxypropyltransferase

Query= uniprot:D8J1Y3_HERSS
         (413 letters)



>FitnessBrowser__Cup4G11:RR42_RS32610
          Length = 424

 Score =  233 bits (594), Expect = 8e-66
 Identities = 138/400 (34%), Positives = 223/400 (55%), Gaps = 16/400 (4%)

Query: 30  PIHTSVTFGYEDARQLAEVFQGKQPGYRYGRQGNPTVAALEDKITKMEDGKSTICFATGM 89
           PI+ +V + +++A+  A++F  K PG  Y R  NPT   LE ++  +E G   +  A+GM
Sbjct: 24  PIYQTVAYAFDNAQHGADLFDLKVPGNIYSRIMNPTNDVLEQRLAALEGGVGALALASGM 83

Query: 90  AAIGAIVQGLLREGDHVVSSAFLFGNTNSLWM-TVGAQGAKVSMVDATDVKNVEAAITAN 148
           AAI   +Q +   GD+++S++ L+G T +L+  T+   G +    D  +       + A 
Sbjct: 84  AAITYAIQTIAEAGDNIISASQLYGGTYNLFAHTLPLSGIETRFADGRNPAAFGDLVDAR 143

Query: 149 TRLVFVETIANPRTQVADLKRIGELCRERGILYVVDNTMTSPYLFRPKTVGAGLVVNSLT 208
           T+ +FVE++ NP   + D++ I ++    GI  +VDNT+ SPYL RP   GA +VV+SLT
Sbjct: 144 TKAIFVESVGNPLGNIVDIEAIAKVAHSHGIPLIVDNTVPSPYLCRPFEHGADIVVHSLT 203

Query: 209 KSIGGHGNALGGALTDTGEFDWTRY---------PHIAEN---YKKNPAPQWGMAQIRAK 256
           K +GGHGN++GGA+ D+G+F W  +         P ++ +   Y +       + + R  
Sbjct: 204 KYLGGHGNSVGGAIVDSGKFPWAEHKARFKRLNEPDVSYHGVVYTEALGAAAYIGRARVV 263

Query: 257 ALRDFGGSLGPEAAHHIAVGAETIALRQERECKNALALAQMLQADERVAAVYYPGLESHP 316
            LR+ G +L P  A  I  G ET+ALR +R  +NALA+A+ L+A  +V  V + GL  HP
Sbjct: 264 PLRNTGAALSPFNAFLILQGIETLALRLDRITENALAVARHLKASPKVEWVNFAGLPEHP 323

Query: 317 QHALSKALFRSFG-SLMSFELKDG--IDCFDYLNRLRLAIPTSNLGDTRTLVIPVAHTIF 373
            HAL +      G  ++SF LK G       +L+ L+L     N+GD ++L    A T  
Sbjct: 324 DHALVQRYLGGRGPGILSFGLKSGGREAGARFLDALQLFTRLVNIGDAKSLATHPASTTH 383

Query: 374 YEMGAERRASMGIAESLIRVSVGLEDTDDLVADFRQALDA 413
            ++ A    + G++E ++R+S+G+E  DDL+ D  +AL A
Sbjct: 384 RQLDAAELKAAGVSEDMVRLSIGIEHIDDLLEDLERALAA 423


Lambda     K      H
   0.319    0.134    0.391 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 487
Number of extensions: 23
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 413
Length of database: 424
Length adjustment: 32
Effective length of query: 381
Effective length of database: 392
Effective search space:   149352
Effective search space used:   149352
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory