Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate HSERO_RS02850 HSERO_RS02850 glutamyl-tRNA(Gln) amidotransferase
Query= curated2:Q9RTA9 (482 letters) >FitnessBrowser__HerbieS:HSERO_RS02850 Length = 651 Score = 219 bits (559), Expect = 2e-61 Identities = 169/473 (35%), Positives = 239/473 (50%), Gaps = 33/473 (6%) Query: 10 LARAVQSGETTPQQLLHGALARAEAVR----GLNALVSLNSHAEEQAAAV-QGRMQAGET 64 L A +G T + L+ LAR A LNA+V+LN A E+A + + R Q+G Sbjct: 57 LQSAQDAGRATSRSLVLAYLARIRAYDQQGPSLNAIVTLNPKALEEADQLDRERRQSGPR 116 Query: 65 LPLAGVPIVVKDNINVTGTRTTCGSRMLANYVSPYTATAAQKLQGAGAVIVGKANMDEFA 124 PL G+PI+VKDN + TT G+ LA + A ++L+ AGAVI+GK M E A Sbjct: 117 GPLHGIPILVKDNYDTVDMPTTGGTLALATLQAQADAFQVKRLREAGAVILGKTTMHELA 176 Query: 125 MGSSTESSASGPTLNPWDHERVPGGSSGGSAVAVAAGISPVSLGSDTGGSVRQPAALCGV 184 G +T SS +G T NP+D R PGGSSGG+ AVAA + +GSDT GS+R PAA + Sbjct: 177 AGVTTVSSLTGFTRNPYDPRRAPGGSSGGTGAAVAASFAAAGMGSDTCGSIRIPAAHQNL 236 Query: 185 YGFKPTYGRVSRYGLVAYASSLDQIGPFARSAEDLALLMNVIAGHDPRDATSLDA----P 240 +G + T G SR G++ +S+ D P ARS EDLA++++ G DP+D++++DA P Sbjct: 237 FGLRTTRGLASRSGVMPLSSTQDVAAPLARSVEDLAIMLDATVGSDPQDSSTVDANGHIP 296 Query: 241 ARFAVG-GADSLRGLRVGVIRESLGG--NTPGVEAALGATLDALRGAGAVVGEVSIPELE 297 + G ADSL+G R+GV+R G V AA+ L L+ GA+V +V+IPEL+ Sbjct: 297 KSYRDGLRADSLQGARIGVLRALFGAAPEDAEVSAAINKALQQLKDQGAIVTDVTIPELD 356 Query: 298 YAIAAYYLIAMPEASSNLARYDGMVYGERVPGGDVTRSMTLTREQGFGQEVQRR--ILLG 355 ++ +I +YD Y + PG V S+ +G E+ L Sbjct: 357 GLLSGSSIIPYE------FKYDLGAYLQSHPGAPV-GSLGEILARGMEHELLEAGLRLRN 409 Query: 356 TYALSSGYYDAYYAKAMKVRRLIADEFTTAF--GQYDVLVTPTSPFPAFRRGEKASDPLA 413 + L + K M R + T D LV PT A GE + Sbjct: 410 SVDLQNPKDKEELEKVMLKRSALKSLMTDVMQKNHLDTLVYPTIQRKAALIGEPQGGAMN 469 Query: 414 MYAADVDTVAVNLAGLPALSVPAGFEEVDGKRLPVGVQFIAPALQDERLLALA 466 + GLPAL++P GF E DG LPV ++ +AP + LL LA Sbjct: 470 CQLSAT-------TGLPALALPVGFTE-DG--LPVSLELLAPEFAEPALLGLA 512 Lambda K H 0.316 0.132 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 691 Number of extensions: 42 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 651 Length adjustment: 36 Effective length of query: 446 Effective length of database: 615 Effective search space: 274290 Effective search space used: 274290 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory