GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Herbaspirillum seropedicae SmR1

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate HSERO_RS10695 HSERO_RS10695 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>FitnessBrowser__HerbieS:HSERO_RS10695
          Length = 417

 Score =  285 bits (729), Expect = 3e-81
 Identities = 164/414 (39%), Positives = 252/414 (60%), Gaps = 16/414 (3%)

Query: 339 SVVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENP 398
           ++ V K+GG ++  +E+++ VA+++ K   +G + VVV SAM   T+ L+ +AK I   P
Sbjct: 2   ALYVHKYGGTSMGSIERIQNVAKRVAKWHDAGHQIVVVPSAMSGETNRLLGMAKEIMAQP 61

Query: 399 DPRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDII 458
           D RELD+L STGE  SVAL++IAL+  G +A+S+ G Q+ I TD  +  ARI  I+   +
Sbjct: 62  DGRELDMLASTGEQVSVALLAIALQALGKQAVSYAGWQVPIKTDSAFTKARIRSIDDAKV 121

Query: 459 SRYLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTA 518
            + L    I ++ GFQG+   G+ITTLGRGGSD +A+A+A ++ A  C +Y DVDGVYT 
Sbjct: 122 RKDLNAGKIVIITGFQGVDADGNITTLGRGGSDTSAVAVAAAIKAAECLIYTDVDGVYTT 181

Query: 519 DPRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKN---------AH 569
           DPR+V +AR +K +++EEM+E++  G++VLQ R+ EFA  Y +   + +         A 
Sbjct: 182 DPRVVSEARRLKTVTFEEMLEMASLGSKVLQIRSVEFAGNYKMPTRVLSSLTDPLTPLAE 241

Query: 570 KETRGTLI--WEGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNID 627
           +   GTLI   E   +E   +  + F    AK+ +  VPD+PG+A +I+  ++   + +D
Sbjct: 242 EAASGTLISFEEDKNMEQATITGIAFSRDEAKITVLGVPDRPGIAYQILGPVADANIEVD 301

Query: 628 MIIQGMKSGEYNTVAFIVPESQLGKLDIDLL----KTRSEAKEIIIEKGLAKVSIVGVNL 683
           MIIQ           F VP  +  K  +++L    K    A  I  +  ++KVS+VGV +
Sbjct: 302 MIIQNQSVEGKTDFTFTVPRGEYAKA-VEVLNNSVKAHIGAAAINGDTKVSKVSVVGVGM 360

Query: 684 TSTPEISATLFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELD 737
            S   I++ +F TL+ EG+NI MIS S  +ISV+ID KY+E AV+A+H  F+LD
Sbjct: 361 RSHVGIASQMFRTLSEEGVNIQMISTSEIKISVLIDEKYMELAVRALHKAFDLD 414


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 675
Number of extensions: 28
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 417
Length adjustment: 36
Effective length of query: 703
Effective length of database: 381
Effective search space:   267843
Effective search space used:   267843
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory