Align Dihydroxy-acid dehydratase 1; DAD 1; EC 4.2.1.9 (uncharacterized)
to candidate 18321 b4297 KpLE2 phage-like element; predicted dehydratase (NCBI)
Query= curated2:Q8TPV2 (553 letters) >FitnessBrowser__Keio:18321 Length = 655 Score = 249 bits (637), Expect = 2e-70 Identities = 181/521 (34%), Positives = 272/521 (52%), Gaps = 37/521 (7%) Query: 46 GHIHLDKLAEAVKAGIRNAGGVPFEFHTIGVCDGLAMGHEGMKYSLPSREVIEDTIELMV 105 GH LD +A I+ +P+ + CDG G GM SLP R + ++ Sbjct: 88 GHYELDIQMKAAAEVIKANHALPYAVYVSDPCDGRTQGTTGMFDSLPYRNDASMVMRRLI 147 Query: 106 RA-HQFDGMVLIPTCDKIVPGHLMA-AGRLDIPAIVVTGGPMLPGYVDDKYTDLISVFEG 163 R+ ++ + +CDK +P +MA A + +I ++V GG LP K + + Sbjct: 148 RSLPDAKAVIGVASCDKGLPATMMALAAQHNIATVLVPGGATLPA----KDGEDNGKVQT 203 Query: 164 VGA-YSAGKLSEAELKRLENLSCAGAGS-CAGMFTANTMACMTEALGLSLPGCATAHAVD 221 +GA ++ G+LS + +R +CA +G C + TA T + E LGL++P A A + + Sbjct: 204 IGARFANGELSLQDARRAGCKACASSGGGCQFLGTAGTSQVVAEGLGLAIPHSALAPSGE 263 Query: 222 AKKVRIAKESGERIVALVKENLTPRKIVTQKSFENAIMVDMAVGGSTNTTLHLPALAHEF 281 IA+ S + L ++ +T R+I+T K+ ENA+ V A GGSTN LH+PA+AH+ Sbjct: 264 PVWREIARASARAALNLSQKGITTREILTDKAIENAMTVHAAFGGSTNLLLHIPAIAHQA 323 Query: 282 GLELP-LKTFDELSRTTPHLISLRPGGPNF--MLHFDRAGGVEAVVQRLAS--KLHLDQL 336 G +P + + +++ P L+S+ P GP + ++ AGGV V+ L S LH D + Sbjct: 324 GCHIPTVDDWIRINKRVPRLVSVLPNGPVYHPTVNAFMAGGVPEVMLHLRSLGLLHEDVM 383 Query: 337 TVNGKTIGENLD------------ELEIVNPKLNAEIITTLENPIHAEGGIAVLK---GS 381 TV G T+ ENLD +L + ++NA+ + A G + + G+ Sbjct: 384 TVTGSTLKENLDWWEHSERRQRFKQLLLDQEQINADEVIMSPQQAKARGLTSTITFPVGN 443 Query: 382 LAPDGSVVKQAAVDPKM------RVHTGPAKVYDCEEDAMKSILAGDVKPGDIVVIRYEG 435 +AP+GSV+K A+DP M H G AKVY E+ A+ I +K GDI+VI G Sbjct: 444 IAPEGSVIKSTAIDPSMIDEQGIYYHKGVAKVYLSEKSAIYDIKHDKIKAGDILVIIGVG 503 Query: 436 PKGGPGMREMLAATAAIGGMGLLESVALITDGRFSGGTRGPCIGHVSPEASEGGPIGLVK 495 P G GM E T+A+ + + V+LITD RFSG + G CIGHV PEA GGPIG ++ Sbjct: 504 P-SGTGMEETYQVTSALKHLSYGKHVSLITDARFSGVSTGACIGHVGPEALAGGPIGKLR 562 Query: 496 DGDLIEINIPERILNLKVTEEELEKRKAAFVPPKKEVTGYL 536 GDLIEI I R L+ +V L R +P ++E T L Sbjct: 563 TGDLIEIKIDCRELHGEV--NFLGTRSDEQLPSQEEATAIL 601 Lambda K H 0.317 0.136 0.393 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1000 Number of extensions: 48 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 553 Length of database: 655 Length adjustment: 37 Effective length of query: 516 Effective length of database: 618 Effective search space: 318888 Effective search space used: 318888 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory