Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate Ga0059261_0838 Ga0059261_0838 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases
Query= curated2:Q9RTA9 (482 letters) >lcl|FitnessBrowser__Korea:Ga0059261_0838 Ga0059261_0838 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases Length = 453 Score = 160 bits (406), Expect = 6e-44 Identities = 148/484 (30%), Positives = 213/484 (44%), Gaps = 71/484 (14%) Query: 7 AAQLARAVQSGETTPQQLLHGALARAEAVR-GLNALVSLN-SHAEEQAAAVQGRMQAGET 64 A +A A+ +GET+ + A+AR EA +NA+V + + A E A + GE Sbjct: 21 ALGIAAAIAAGETSARAQCELAIARIEADDDAINAVVVRDFARALEAADRADAAVARGER 80 Query: 65 LPLAGVPIVVKDNINVTGTRTTCGSRMLANYVSPYTATAAQKLQGAGAVIVGKANMDEFA 124 P GVP+ VK+ +V G T+ G + ++ A Q+++ AGAVI+GK N+ Sbjct: 81 RPFLGVPMTVKEAFDVEGLPTSWGFAHARDTIATSDAVVVQRMKAAGAVILGKTNVAPGL 140 Query: 125 MGSSTESSASGPTLNPWDHERVPGGSSGGSAVAVAAGISPVSLGSDTGGSVRQPAALCGV 184 +++ G T NP D R GGSSGGSA A+AAG +GSD GGS+R PAA CGV Sbjct: 141 ADWQSDNVVYGRTANPRDLSRTAGGSSGGSAAALAAGFVTAEIGSDIGGSIRVPAAFCGV 200 Query: 185 YGFKPTYGRVSRYGLVAYASS-----LDQIGPFARSAEDLALLMNVIAGHDPRDATSLDA 239 +G KP+Y + YG S L +GP AR A DLA +++++A T L Sbjct: 201 WGHKPSYELIDPYGHRFPGSDGASPPLGVVGPMARDAADLAAMLDILAD------TPLPR 254 Query: 240 PARFAVGGADSLRGLRVGVIRESLGGNTPGVEAALGATLDALRGAGAVVGEVS--IPELE 297 RF G + L P + AL A AG + S +P+L Sbjct: 255 AGRFLGPGGKQILLLD----SHPAAPTDPAIRGALDRLDAAANQAGIHIARSSDLLPDLA 310 Query: 298 YAIAAYYLIAMPEASSNLARYDGMVYGERVPGGDVTRSMTLTREQGFGQEVQRRILLGTY 357 AY + + + PG + G Sbjct: 311 AQHRAY------------CKMLAITFARGAPGPN-----------------------GQA 335 Query: 358 ALSSGYYDAYYAKAMKVRRLIADEFTTAFGQYDVLVTPTSPFPAFRRGEKASDPLAMYAA 417 A S ++D A+A + RR+ ++ F ++D +VTP + AF + + M Sbjct: 336 ASLSDWFDQLDAQA-RNRRI----WSRLFDEFDAVVTPANVVTAFPHRDDPYNERRMTVD 390 Query: 418 DVDT------VAVNLA---GLPALSVPAGFEEVDGKRLPVGVQFIAPALQDERLLALAGA 468 DT V +A GLPA + PAG DG LPVG+Q IA D R +A+A Sbjct: 391 GQDTSYDAQLVWAGIATYPGLPATAFPAG-TTADG--LPVGLQVIADYRDDHRAIAIADL 447 Query: 469 LEAV 472 L V Sbjct: 448 LHGV 451 Lambda K H 0.316 0.132 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 539 Number of extensions: 34 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 482 Length of database: 453 Length adjustment: 33 Effective length of query: 449 Effective length of database: 420 Effective search space: 188580 Effective search space used: 188580 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory