Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate Ga0059261_3751 Ga0059261_3751 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases
Query= curated2:Q72L58 (471 letters) >lcl|FitnessBrowser__Korea:Ga0059261_3751 Ga0059261_3751 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases Length = 518 Score = 196 bits (499), Expect = 1e-54 Identities = 168/491 (34%), Positives = 243/491 (49%), Gaps = 63/491 (12%) Query: 1 MLAHEIRARVARGEVSPLEVAQAYLKRVQELDPGLGAFLS--LNERLLEEAEAVDPGL-- 56 M A ++ + R +S EV A+L+++ L+P A +S ERLL+ A A D Sbjct: 45 MDAVDLVTAIRRRVLSAREVMTAHLEQIDTLNPRFNAIVSRVAPERLLKAAAACDADAAA 104 Query: 57 -----PLAGLVVAVKDNIATRGLRTTAGSRLLENFVPPYEATAVARLKALGALVLGKTNL 111 PL G AVKD G+ T G+ +L VP ++ V+R++ GA+ +GKTN+ Sbjct: 105 GRFHGPLHGFPHAVKDTAPAAGIPFTQGTPILRENVPTADSLVVSRMRNAGAIFIGKTNV 164 Query: 112 DEFGMGSSTEHSAFFPTKNPFDPDRVPGGSSGGSAAALAADLAPLALGSDTGGSVRQPAA 171 EF +GS + + F T+N ++P GGSSGG+A ALA + PLA GSD GGS+R PA Sbjct: 165 PEFALGSHSFNPLFGVTRNAWNPAVSAGGSSGGAAVALALRMVPLADGSDFGGSLRNPAG 224 Query: 172 FCGVYGLKPTYGRV-SRFGLIAYASSLDQIGPMARSVRDLALLMDAVAGPDPLDATSL-D 229 + V+G +P++GRV S + + GPMAR VRD+A L+ AGPD SL + Sbjct: 225 WNNVFGYRPSFGRVPSVPSSDVFGQTFAVSGPMARRVRDVAFLLSVQAGPDSRSPFSLTE 284 Query: 230 LPPRFQEALEGPLPPLR---LGVVREALAGNSPGVERALEEALKVFRELGLSVR--EVSW 284 P RF +L+ R LG ++ ALA PGV E+AL FR +G++V +S Sbjct: 285 DPARFAGSLDREWKGRRVGWLGDLQGALA-TEPGVLDTCEKALSAFRSIGMAVEAARLSL 343 Query: 285 PSLPQALAAYYILAPAEASSNLARYDGTLYGRRAEGE---EVEGMMEATRALFGLEVKRR 341 + A + + + + Y R+ + E EVEG ++ T G +V Sbjct: 344 SAEEMWRTAVTLRHWSVGADLIGHYSDPAKRRQMKPEAIWEVEGYLKLT----GRQVA-- 397 Query: 342 VLVGTFVLSSGYYEAYYGRA---QAFRRRLKAEAQALFREVDLLLLPTTPHPAFPFG--- 395 EA GRA QAFR LF D L+LPT FPF Sbjct: 398 -------------EASEGRARIYQAFR--------DLFDRYDFLILPTA--QVFPFDVEQ 434 Query: 396 ------ARRDPLAMYREDLYTVGANLTGLPALSFPAGFEG--HLPVGLQLLAPWGEDERL 447 A R+ + +R T+ A + GLP L+ PAGF G LP+G+Q++ P D + Sbjct: 435 HWPRSIAGREMDSYHRWMEVTLPATMAGLPVLAAPAGFGGARRLPIGIQIIGPNHADLAV 494 Query: 448 LRAALAFEEAT 458 L+ A+E A+ Sbjct: 495 LQVGHAYENAS 505 Lambda K H 0.319 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 578 Number of extensions: 38 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 471 Length of database: 518 Length adjustment: 34 Effective length of query: 437 Effective length of database: 484 Effective search space: 211508 Effective search space used: 211508 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory