Align Alanine--glyoxylate aminotransferase 2 homolog 2, mitochondrial; Beta-alanine-pyruvate aminotransferase 2; EC 2.6.1.44 (characterized)
to candidate BWI76_RS14020 BWI76_RS14020 aspartate aminotransferase family protein
Query= SwissProt::Q94AL9 (477 letters) >FitnessBrowser__Koxy:BWI76_RS14020 Length = 461 Score = 196 bits (499), Expect = 1e-54 Identities = 139/434 (32%), Positives = 212/434 (48%), Gaps = 19/434 (4%) Query: 59 DVILSKRKEFLSPSMFCLYRKPLNIVDGKMQYLFDESGRRYLDAFAGIAVVNCGHCHPDV 118 D L+++ EF S + PL I + +L D ++YLD AG + GH HPDV Sbjct: 21 DTFLARQAEFESNVRSYPRKLPLAITKAEGVWLTDADNKQYLDCLAGAGTLALGHNHPDV 80 Query: 119 VEPVINQIKRLQHPTVLYLNHAIAD-FSEALASKLPGDLK---VVFFTNSGTEANELALM 174 ++ + + I L L + D FSE L S LPG+ K + F SG +A E AL Sbjct: 81 LQSIQSVITSGLPLHTLDLTTPLKDRFSEYLLSLLPGEGKEYCLQFTGPSGADAVEAALK 140 Query: 175 MAKLYTGCQDIVAVRNGYHGNAAATMGATGQSMWK--FNVVQNSVHHALNPDPYRGVFGS 232 +AK YTG +++ GYHG + TG K N + V P YR G Sbjct: 141 LAKKYTGRSSVISFSGGYHGMTHGALSVTGNLSPKAAVNGMMPEVQFMPYPHQYRCPLGI 200 Query: 233 DGEKYAKDL----QDLIQYGTTG--HIAGFICEAIQGVGGIVELAPGYLSAAYDTVKKAG 286 GE K L ++LI +G A I EA+QG GG+ +L ++ G Sbjct: 201 GGEAGVKALTYYFENLINDVESGVRKPAAVILEAVQGEGGVNPAPVEWLQRIRKVTQEHG 260 Query: 287 GLFIADEVQSGFARTGNFWGFEAHNVVPDIVTMAKGIGNGFPLGAVVTTPEIAGVLTRRS 346 L I DEVQ+GFARTG F+ FE + PDI+ M+K +G G PL AV+ + Sbjct: 261 ILLIIDEVQAGFARTGKFFAFEHAGIEPDIIVMSKAVGGGLPL-AVLGIKKQFDAWEPGH 319 Query: 347 YFNTFGGNSVSTTAGLAVLNVIEKEKLQENAAMVGSYLKEKLTQLKEKHEIIGDVRGRGL 406 + TF GN ++ GL L ++ K+ + A G +LK KL ++++++ +IG VRG GL Sbjct: 320 HTGTFRGNQLAMATGLTTLRHLKDNKIADKTAAQGEWLKGKLAEMQKRYPVIGHVRGLGL 379 Query: 407 MLGVELVSDRKLKT-----PATAETLHIMD-QMKELGVLIGKGGYFGNVFRITPPLCFTK 460 M+G+E+V + PA E ++ + E G+++ +GG G V R+ P L + Sbjct: 380 MIGIEIVKPNEAPDHMGCYPADGELSALLQKKCFEAGLILERGGRHGCVLRLLPSLLISN 439 Query: 461 DDADFLVEAMDYSM 474 + + + + ++ Sbjct: 440 AELEIFFDKFEQAL 453 Lambda K H 0.320 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 520 Number of extensions: 33 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 461 Length adjustment: 33 Effective length of query: 444 Effective length of database: 428 Effective search space: 190032 Effective search space used: 190032 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory