GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysJ in Shewanella oneidensis MR-1

Align [amino group carrier protein]-C-terminal-L-glutamyl-γ-L-lysine aminotransferase (EC 2.6.1.118; EC 2.6.1.124) (characterized)
to candidate 199805 SO0617 acetylornithine aminotransferase (NCBI ptt file)

Query= metacyc::MONOMER-18314
         (387 letters)



>FitnessBrowser__MR1:199805
          Length = 405

 Score =  239 bits (609), Expect = 1e-67
 Identities = 149/395 (37%), Positives = 215/395 (54%), Gaps = 20/395 (5%)

Query: 3   LIQLYGDRGLTIVKGEAQYVWDIEGRRYLDFHTGIGVAFLGHRNPIILEYLKNQLENISI 62
           ++  Y    +  V+GE   VWD EG  ++DF  GI V  LGH +P ++  LK Q E +  
Sbjct: 16  MVPNYAPAAVIPVRGEGSRVWDQEGNEFIDFAGGIAVNCLGHCHPALVNALKTQGEKLWH 75

Query: 63  LSTSFSTPIKDEMLQALDKVKPDKMDNAMLLNSGTEAVEAALKTARKITGRK------KI 116
           LS   +     E+   L  V     +     NSG EA EAALK AR+    K      +I
Sbjct: 76  LSNVMTNEPALELATKL--VNSTFAERVYFANSGAEANEAALKLARRYALEKHGVEKDEI 133

Query: 117 IAFKNAFHGRTAGSLSVTWNKKYREPFEPLVGPVEFLTFNNIEDL-SKIDNETAAVIVEP 175
           IAF  AFHGRT  ++SV     Y + F P    +  L FN++  L + + ++T A+++EP
Sbjct: 134 IAFDKAFHGRTFFTVSVGGQAAYSDGFGPKPQSITHLPFNDVAALEAAVSDKTCAIMLEP 193

Query: 176 IQGESGVIPANIEFMKALKEKTENTGSLLIFDEIQTGFGRTGKLWAYKHYNIVPDILTAG 235
           +QGE G+I A+  F+KA++E      +L+IFDE+QTG GRTG+L+AY   +IVPDILT  
Sbjct: 194 LQGEGGIIDADPAFLKAVRELANKHNALVIFDEVQTGVGRTGELYAYMGTDIVPDILTTA 253

Query: 236 KAIGGGFPVSVVFLPDHIANKLEEGDHGSTYGGNPMAMAAVTAACKVIEKENVVEQANQK 295
           KA+GGGFP++ +     IA  L+ G HGSTYGGNP+A A   A   V+    V+     +
Sbjct: 254 KALGGGFPIAAMLTTTEIAEHLKVGTHGSTYGGNPLACAIGNAVLDVVNTPEVLNGVKHR 313

Query: 296 GQQFSNILVKNLADLKVVREVRGKGLMIGIDIRFQ-PGQVLKYL---QEKGILAVKAGST 351
            Q   + L K      V  EVRGKGL++G  +  Q  G+   +L     +G++++ AG+ 
Sbjct: 314 EQLLRDGLNKINEKYHVFSEVRGKGLLLGAVLNEQYQGRSRDFLVASVAEGLMSLMAGAN 373

Query: 352 VIRFLPSYLITYENMEEASNVLREGLLKIENKAVS 386
           V+RF PS +I   +       + EGL + E    S
Sbjct: 374 VVRFAPSLVIPEAD-------IAEGLARFERAVAS 401


Lambda     K      H
   0.317    0.136    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 376
Number of extensions: 15
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 387
Length of database: 405
Length adjustment: 31
Effective length of query: 356
Effective length of database: 374
Effective search space:   133144
Effective search space used:   133144
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory