GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Marinobacter adhaerens HP15

Align Glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate GFF502 HP15_489 glycine hydroxymethyltransferase

Query= reanno::pseudo13_GW456_L13:PfGW456L13_2685
         (418 letters)



>FitnessBrowser__Marino:GFF502
          Length = 417

 Score =  661 bits (1705), Expect = 0.0
 Identities = 323/416 (77%), Positives = 369/416 (88%)

Query: 1   MFSKHDQIKGYDDELLAAMNAEDARQEHHIELIASENYTSQRVMQAQGSGLTNKYAEGYP 60
           MF++  +I G+DDEL  AM AE+ RQE HIELIASENYTS RVM+AQGS LTNKYAEGYP
Sbjct: 1   MFNREMKIAGFDDELWNAMQAEEKRQEAHIELIASENYTSPRVMEAQGSVLTNKYAEGYP 60

Query: 61  GKRYYGGCEHVDVVEQLAIDRARQLFGADYANVQPHSGSQANAAVYLALLQAGDTVLGMS 120
           GKRYYGGCE VD+ E+LAI+RA++LFGA YANVQPHSGSQAN+AV++ALL+ GDTVLGMS
Sbjct: 61  GKRYYGGCEFVDIAEELAIERAKELFGAAYANVQPHSGSQANSAVFMALLKPGDTVLGMS 120

Query: 121 LAHGGHLTHGAKVSFSGKLYNAVQYGIDTTTGLIDYDEVERLAVEHKPKMIIAGFSAYSK 180
           LAHGGHLTHGA V+FSGK+YNAVQYGI+T TGL+DYDE+E LA+EHKPKMIIAGFSAYS+
Sbjct: 121 LAHGGHLTHGASVNFSGKIYNAVQYGINTDTGLLDYDEIESLALEHKPKMIIAGFSAYSQ 180

Query: 181 TLDFPRFRQIADKVGAYFFVDMAHVAGLVATGLYPNPLPYADVVTTTTHKTLRGPRGGLI 240
            LDF RFR+IADKVGAY FVDMAHVAGLVA G+YP+P+P+A VV TTTHKTLRGPRGGLI
Sbjct: 181 ELDFARFREIADKVGAYLFVDMAHVAGLVAAGVYPDPVPHAHVVATTTHKTLRGPRGGLI 240

Query: 241 LAKANPELEKKLNAAVFPGGQGGPLMHVIAAKAVCFKEALEPAFKTYQSQVIRNAQAMAQ 300
           LA  + +L+KKLN+AVFPGGQGGPLMHVIAAKAVCFKEA+   FKTYQ QV++NA AMAQ
Sbjct: 241 LACDDADLQKKLNSAVFPGGQGGPLMHVIAAKAVCFKEAMSDDFKTYQQQVVKNASAMAQ 300

Query: 301 VFIERGYDVVSGGTDNHLFLVSLIRQGLTGKDADAALGRAGITVNKNAVPNDPQSPFVTS 360
           VF++RGYDVVSGGT NHLFLVSLI+Q +TGKDADAALGRA ITVNKNAVPNDP+SPFVTS
Sbjct: 301 VFVDRGYDVVSGGTKNHLFLVSLIKQDITGKDADAALGRAHITVNKNAVPNDPRSPFVTS 360

Query: 361 GLRIGTPAITSRGFKEAQSIALAGWICDILDHLGDADIEANVARQAAALCADFPVY 416
           GLRIGTPAIT+RGF E++   LAGWICDILD+L D  + + V  Q +ALCA FPVY
Sbjct: 361 GLRIGTPAITTRGFGESECRDLAGWICDILDNLDDEAVNSRVREQVSALCARFPVY 416


Lambda     K      H
   0.319    0.135    0.395 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 659
Number of extensions: 17
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 418
Length of database: 417
Length adjustment: 32
Effective length of query: 386
Effective length of database: 385
Effective search space:   148610
Effective search space used:   148610
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory