Align Probable 2-isopropylmalate synthase; EC 2.3.3.13; Alpha-IPM synthase; Alpha-isopropylmalate synthase (uncharacterized)
to candidate 8499505 DvMF_0275 putative alpha-isopropylmalate/homocitrate synthase family transferase (RefSeq)
Query= curated2:Q8TYB1 (499 letters) >FitnessBrowser__Miya:8499505 Length = 540 Score = 201 bits (511), Expect = 5e-56 Identities = 158/526 (30%), Positives = 255/526 (48%), Gaps = 40/526 (7%) Query: 1 MPDRVRIFDTTLRDGEQTPGVSLTVEEKVEIARKLDEFGVDTIEAGFPVASEGEFEAVRA 60 M R++++DTTLRDG Q+ ++LT +K++IA KLDE G+D IE G+P ++ + + Sbjct: 1 MTRRIQLYDTTLRDGSQSEDINLTAADKLKIALKLDEIGIDRIEGGWPGSNPVDVAFFKE 60 Query: 61 IAGEELD-AEICGLARCVKGDIDAAIDADVDCV--------HVFIATSDIHLRYKLEMSR 111 IA L A I + A D ++ + +F + ++H L + Sbjct: 61 IANYHLKHAVISAFGSTHHPNFTADSDPNLRAIAESGARVASIFGKSCEVHAAEALRLDA 120 Query: 112 EEALERAIEGVEYASDHGVTVEFSAE---DATRTDRDYLLEVYKATVEAGADRVNVPDTV 168 LE + V + V F AE D R + Y L + EAGAD + + DT Sbjct: 121 ARNLEIIGDSVAFLKGKLAEVYFDAEHFFDGYRHNAAYALSALRRAHEAGADVLVLCDTN 180 Query: 169 GVMTPPEMYRLTAEVVDAVD-VPVSVHCHNDFGMAVANSLAAVEAGAEQVHVTVNGIGER 227 G P E+ R+ EV +A+ V +H HND +AVANS+AAV+AGA Q+ T+NG+GER Sbjct: 181 GGTLPHEVARIVTEVREALPGAAVGIHAHNDCELAVANSIAAVQAGAVQIQGTINGVGER 240 Query: 228 AGNASLEQVVMALKALYDIEL----DVRTEMLVELSRLVERLTGVVVPPNTPIVGENAFA 283 GNA+L ++ L+ + E + R + L ++ V + + P VG +AFA Sbjct: 241 CGNANLCSIIPTLELKFGGEYTCLPEGRLQQLTAVAAYVSEVANIPPFSRQPYVGRSAFA 300 Query: 284 HESGIHSHGVIKKAETYEPIRPEDVGHRRRIVLGKHAGRHAIKKKLEEMGIEVTEEQ--- 340 H+ G+H V +K+ YE I P+ VG+R+RI++ + AGR I G + +++ Sbjct: 301 HKGGVHVSAVNRKSSLYEHISPDVVGNRQRILITELAGRSNIVSLARRFGFHLDKDEPVV 360 Query: 341 ---LDEIVRRVKELGDKGKRVTEDDLEAIARDVVGEVPESEAAVKLEEIAVMTGNKFTPT 397 L E+ ++ D +L + + V E ++ + ++ P Sbjct: 361 KGLLTELKKKASLGYDYAAAEASVELLILRKLARRGVREFFRLLQFRVLETKHDSEGEPV 420 Query: 398 ASVRVYLDGE---EHEAASTGVGSVDAAIRALREAIEELGM-----DVELKEYRLEAIT- 448 + V V +D E EH AA TG G V+A ALR+A+ LG ++ L ++++ +T Sbjct: 421 SEVSVMVDVEGVTEHTAA-TGRGPVNALDNALRKAL--LGFYPRLSEMRLLDFKVRVLTG 477 Query: 449 ----GGTDALAEVTVRLEDEDGNVTTARGAAEDIVMASVKAFVRGV 490 GGT + V + D D T G + +I+ AS +A V Sbjct: 478 AETGGGTASTVRVLIESGDSDSRWVTV-GVSFNIIEASWQALADSV 522 Lambda K H 0.315 0.133 0.364 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 584 Number of extensions: 25 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 499 Length of database: 540 Length adjustment: 35 Effective length of query: 464 Effective length of database: 505 Effective search space: 234320 Effective search space used: 234320 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.5 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory