GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Dechlorosoma suillum PS

Align Aspartate aminotransferase; AAT; AspAT; Putative 2-aminoadipate transaminase; Transaminase A; EC 2.6.1.1; EC 2.6.1.39 (characterized)
to candidate Dsui_0132 Dsui_0132 aspartate/tyrosine/aromatic aminotransferase

Query= SwissProt::P58350
         (410 letters)



>FitnessBrowser__PS:Dsui_0132
          Length = 385

 Score =  173 bits (438), Expect = 9e-48
 Identities = 122/395 (30%), Positives = 189/395 (47%), Gaps = 26/395 (6%)

Query: 15  ASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVKQAASDAIHRGETKY 74
           A R++ I    ++++  RA  ++ +G+ +I +  GEPDF TPE +  AA + +  G   Y
Sbjct: 5   APRLADIAPFHVMELLGRARELEAQGRDIIHMEVGEPDFPTPEPILAAAREFLQDGRVFY 64

Query: 75  TALDGTPELKKAIREKFQRENGLAYELDEITVATGAKQILFNAMMASLDPGDEVIIPTPY 134
           T   G PEL++AI   +++  G+A     I +  GA   L  A+     PG E ++  P 
Sbjct: 65  TPALGLPELREAISGFYRQRYGIAVPASRIAITAGASGALTLALACLAAPGSEWLLTDPG 124

Query: 135 WTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLLNSPSNPSGAAYSAA 194
           +      V   EG PV I   A+S F+ T   LE     RT   L  SP+NP+G    AA
Sbjct: 125 YPCNRHFVRAFEGVPVSIPVGAASNFQPTRLDLEQHWNERTAGALFASPANPTGTMLDAA 184

Query: 195 DYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLEPGLKNRTLTVNGVSKAYAMT 254
           +   + +  +R     L++D++Y  + Y+G     P  L  G  +    V   SK + MT
Sbjct: 185 ELADIAD-FVRQRQGQLIIDEIYHGLTYNG---DAPTALAAG--DNIFVVQSFSKYFQMT 238

Query: 255 GWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQD--FLKERTESFQRRR 312
           GWR+G+   P   ++ +  +        S+ +Q A++AA   P+    L++R   F+ RR
Sbjct: 239 GWRLGWLVIPEPFVRDVEKLAQNLFISASTPAQHAALAAFQ-PETIALLEQRRAEFKARR 297

Query: 313 DLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTD--FCAYLLEDAHV 370
           D +   L AI       PEGAFY ++ C+ +            TD    F   LLE+A V
Sbjct: 298 DYLAPALEAIGFRITAQPEGAFYLYADCSTL------------TDDSFGFARRLLEEAGV 345

Query: 371 AVVPGSAF---GLSPFFRISYATSEAELKEALERI 402
           A+ PG  F   G S   R +Y  ++A L E +ERI
Sbjct: 346 AITPGIDFGNHGASSHVRFAYTNAQARLAEGVERI 380


Lambda     K      H
   0.318    0.134    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 407
Number of extensions: 23
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 410
Length of database: 385
Length adjustment: 31
Effective length of query: 379
Effective length of database: 354
Effective search space:   134166
Effective search space used:   134166
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory