Align alkaline phosphatase (EC 3.1.3.1) (characterized)
to candidate 5208648 Shew_1157 alkaline phosphatase (RefSeq)
Query= BRENDA::P00634 (471 letters) >lcl|FitnessBrowser__PV4:5208648 Shew_1157 alkaline phosphatase (RefSeq) Length = 545 Score = 139 bits (350), Expect = 2e-37 Identities = 143/489 (29%), Positives = 203/489 (41%), Gaps = 117/489 (23%) Query: 64 AKNIILLIGDGMGDSEITAAR---NYAEGAGGFFKGI--DALPLTGQYTHYALNKKTGKP 118 AKNIIL +GDGMG S +TAAR +G G + + LP G Y ++ +T Sbjct: 76 AKNIILFVGDGMGVSTVTAARILDGQLKGQTGEENSLSFETLPHLGLAKTYNVDGQT--- 132 Query: 119 DYVTDSAASATAWSTGVKTYNGAL----GVD------IHEKDHPTILEMAKAAGLATGNV 168 DSA + TA TGVKT G + GV+ +D T LE+A AG++TG V Sbjct: 133 ---PDSAGTMTAMVTGVKTDVGVISQGEGVERGVCSSTTGQDLVTSLELAAMAGMSTGVV 189 Query: 169 STAELQDATPAALVAHVTSRKCYGPSATSEKCPGNALEKGGKGSITEQLLNAR----ADV 224 STA + ATPAA AHV R S P A+ G K I Q+L+ +V Sbjct: 190 STARITHATPAATYAHVPERDWEADS----NLPAEAVTNGCK-DIAAQMLDFNDGKGINV 244 Query: 225 TLGGGAKTFAETATAGEWQGK----------TLREQAQARGYQLVSDAASLNSVTEANQQ 274 +GGG + F T +GK T AQ V+D S ++ + + Sbjct: 245 VMGGGRRAFIPNTTVDP-EGKAGKRKDGRDLTAEWMAQYPNAAYVTDRDSFLAM-DTSTT 302 Query: 275 KPLLGLFADGNMPVRWLGPKATYHGNIDKPAVTCTPNPQRNDSVPTLAQMTDKAIELLSK 334 + LGLF +M + + +G P+LA+MT K+I++LSK Sbjct: 303 EHALGLFNSSHMEYDYDRVEDGVNGE------------------PSLAEMTAKSIDILSK 344 Query: 335 NEKGFFLQVEGASIDKQDHAANPCGQIGETVDLDEAVQRALEFAKKEGNTLVIVTADHAH 394 N+KGF L VE ID HA N + +T+ L EAV+ A+E +TL++VTADH+H Sbjct: 345 NDKGFVLIVEAGRIDHAHHAGNAARALHDTIALSEAVRVAME-KTSANDTLLMVTADHSH 403 Query: 395 ASQIVAPDTKA---------------PGLTQALNTKDGAVMVMSYGNS------------ 427 I T+ P +T + + + Y N Sbjct: 404 VFTIAGYPTRGNPILGLVKSNDSNGQPSVTNSTDANGMPYTTVGYANGLGFGSLETGGDE 463 Query: 428 -----------------------------EEDSQEHTGSQLRIAAYGPHAANVVGLTDQT 458 +S+ H G + I A GP A+ V G +Q Sbjct: 464 RYNYAAEPGRVDLNYIDTQSAGFHQEALVPLESETHAGEDVAIFARGPGASLVEGTVEQN 523 Query: 459 DLFYTMKAA 467 +F+ M A Sbjct: 524 HIFHVMNYA 532 Lambda K H 0.312 0.128 0.365 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 673 Number of extensions: 39 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 471 Length of database: 545 Length adjustment: 34 Effective length of query: 437 Effective length of database: 511 Effective search space: 223307 Effective search space used: 223307 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.2 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 42 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory