Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate 5209582 Shew_2046 phosphogluconate dehydratase (RefSeq)
Query= curated2:A8AB39 (552 letters) >lcl|FitnessBrowser__PV4:5209582 Shew_2046 phosphogluconate dehydratase (RefSeq) Length = 608 Score = 241 bits (615), Expect = 6e-68 Identities = 167/509 (32%), Positives = 264/509 (51%), Gaps = 35/509 (6%) Query: 34 IGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTP-LEFGTIAVCDGIAMGHEGMRYSLP 92 IG+ ++N+++ H + + +K G + G A+CDG+ G GM SL Sbjct: 68 IGIVTAFNDMLSAHQPYEHYPQLLKDACHEVGSVAQVAAGVPAMCDGVTQGQPGMELSLL 127 Query: 93 SREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARL-EVPVILINGGPMMPGVYG 151 SREVIA + + + + D +++ CDKI PG L+ A +P++ + GPM G+ Sbjct: 128 SREVIAMSTAVGLSHNMFDGALLLGICDKIVPGLLIGALSFGHLPMLFVPAGPMKSGIPN 187 Query: 152 KERIDFKDLMERMNVLIKEGRTEE--LRKLEESALPGPGSCAGLFTANTMNMLSEAMGLM 209 KE+ R+ +G+ + L + E + G+C TAN+ ++ E MGL Sbjct: 188 KEKA-------RVRQKFAQGQVDRAALLEAESKSYHSAGTCTFYGTANSNQLMLEVMGLQ 240 Query: 210 LPGASTVPAVEARRLWYAKLTGMRIVKMVEEGL--TP-DKILTRKALENAIAVDMALGGS 266 LPG+S V + R K+ ++ ++ E G TP +++ K++ N I +A GGS Sbjct: 241 LPGSSFVNPDDPLREALNKMAAKQVCRLTEMGTQYTPIGEVVNEKSVVNGIVALLATGGS 300 Query: 267 TNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFVVDLDRAGGIPAVLKEL 326 TN +H+ A A GI + + F E+S VP +A + P+G + AGG+ ++KEL Sbjct: 301 TNLTMHIVAAARAAGIIVNWDDFSELSDAVPLLARVYPNGHADINHFHAAGGMAFLIKEL 360 Query: 327 GEAGLIHKDALTVTG---------------KTVWENVKDAAVLDREVIRPLDNPYSPFGG 371 +AGL+H+D LTV G + VW + + LD+EV+ + +P+ GG Sbjct: 361 LDAGLLHEDVLTVAGPGLRRYTQEPRLIDNELVWVEGPNES-LDKEVLTAVASPFQANGG 419 Query: 372 LAILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAIRGGEIEPGTVIVIRYE 431 L +LKG+L AV+K SAV + A V D + + GE++ V+V++ + Sbjct: 420 LKLLKGNL--GRAVIKVSAVAESHRFVEAPAVVIDDQNKLEGLFKAGELDRDCVVVVKGQ 477 Query: 432 GPRGGPGMREMLTATAAVMAL-GLGDKVALVTDGRFSGAT-RGPAIGHVSPEAAAGGPIA 489 GP+ GM E+ T + +L G KVAL+TDGR SGA+ + PA H++PEA GG IA Sbjct: 478 GPKAN-GMPELHKLTPILGSLQDKGFKVALLTDGRMSGASGKVPAAIHLTPEALDGGLIA 536 Query: 490 LVQDGDEIVIDIEKRRLDLLVDEKELEER 518 V++GD I +D + LLVDE L R Sbjct: 537 KVENGDLIRVDANTGEVSLLVDEAVLASR 565 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 811 Number of extensions: 48 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 608 Length adjustment: 36 Effective length of query: 516 Effective length of database: 572 Effective search space: 295152 Effective search space used: 295152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory