Align Alanine--glyoxylate aminotransferase 2 homolog 2, mitochondrial; Beta-alanine-pyruvate aminotransferase 2; EC 2.6.1.44 (characterized)
to candidate GFF2831 PGA1_c28770 taurine--pyruvate aminotransferase Tpa
Query= SwissProt::Q94AL9 (477 letters) >lcl|FitnessBrowser__Phaeo:GFF2831 PGA1_c28770 taurine--pyruvate aminotransferase Tpa Length = 465 Score = 181 bits (458), Expect = 6e-50 Identities = 133/435 (30%), Positives = 214/435 (49%), Gaps = 44/435 (10%) Query: 80 PLNIVDGKMQYLFDESGRRYLDAFAG-IAVVNCGHCHPDVVEPVINQIKRLQHPTVLYLN 138 P IV+GK ++D++G+ +LDA +G + VN G+ ++ + V +Q+ +L + + Sbjct: 36 PRIIVEGKGMRVWDQNGKEWLDAVSGGVWTVNVGYGREEIAKAVYDQLMKLCYFAQSAGS 95 Query: 139 HAIADFSEALASKLPGDLKVVFFTNSGTEANELALMMA-----KLYTGCQDIVAVRN-GY 192 A F+E L K+PG + V++ NSG+EANE A M K Y G + + R+ Y Sbjct: 96 IPGALFAEKLIEKMPG-MSRVYYNNSGSEANEKAFKMVRQIAHKKYGGKKTKILYRDRDY 154 Query: 193 HGNAAATMGATGQSMWKFNVVQNSVHHALNPD--------PYR----GVFGSDGEKY--- 237 HG+ A M A GQ +N + PD YR G+ G+++ Sbjct: 155 HGSTLAAMSAGGQEE------RNMQYGPFAPDFVKVPHCMEYRKHELGLEHLSGKEFGIA 208 Query: 238 -AKDLQDLIQYGTTGHIAGFICEAIQGVGGIVELAPGYLSAAYDTVKKAGGLFIADEVQS 296 A ++++I + E + GG++E GY + K+ L DEV Sbjct: 209 AANQIEEIILREGPDTVGALCLEPVTAGGGVIEAPEGYWPRVQEICKQYDILLHIDEVVC 268 Query: 297 GFARTGNFWGFEAHNVVPDIVTMAKGIGNGFPLGAVVTTPEIAGVLTR------RSYF-- 348 G RTG ++G++ + + PD VTMAKG+ +G+ A + T E + + +YF Sbjct: 269 GVGRTGTWFGYQHYGIQPDFVTMAKGVASGYAAIACLVTTEAVFDMFKDDASDPMNYFRD 328 Query: 349 -NTFGGNSVSTTAGLAVLNVIEKEKLQENAAMVGSYLKEKLTQLKEKHEIIGDVRGRGLM 407 +TFGG + A L + +IE E L +N +G+ +K L L EKH++IGDVRG+GL Sbjct: 329 ISTFGGCTAGPAAALVNMQIIEDENLLDNCTAMGARMKSNLEALMEKHQVIGDVRGKGLF 388 Query: 408 LGVELVSDRKLKTP-----ATAETLHIMDQMKELGVLIGKGGYFGNVFRITPPLCFTKDD 462 +G ELV+DR K P A A +Q +GV N +P L T +D Sbjct: 389 IGAELVADRDTKEPVDEKLAQAVVAECGNQNVIIGVTNRSIPGKNNTLCFSPALIVTPED 448 Query: 463 ADFLVEAMDYSMSKM 477 D + +A+D +++K+ Sbjct: 449 VDKITDAVDVALTKV 463 Lambda K H 0.320 0.136 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 534 Number of extensions: 29 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 477 Length of database: 465 Length adjustment: 33 Effective length of query: 444 Effective length of database: 432 Effective search space: 191808 Effective search space used: 191808 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory