Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate GFF723 PGA1_c07380 dihydroxy-acid dehydratase IlvD
Query= curated2:A5UY13 (559 letters) >FitnessBrowser__Phaeo:GFF723 Length = 571 Score = 351 bits (900), Expect = e-101 Identities = 214/543 (39%), Positives = 304/543 (55%), Gaps = 17/543 (3%) Query: 22 RAMLKAIGFTDEDL-AKPIIGIANTWIETMPCNINLRALAARVKEGVRAAGGTPMEFNTV 80 R+ +K GF D +PIIGI NTW E PCN LR LA VK GV AGG P+EF + Sbjct: 22 RSWMKNQGFPDHAFDGRPIIGICNTWSELTPCNSGLRDLAEGVKRGVWEAGGFPVEFPVM 81 Query: 81 AIADGVTMGTEGMKASLISRDLIADSIELMGRGYMFDAIIALVACDKTIPGAAMGLTRLN 140 ++ + T+ +++ R+L+A +E R Y D ++ L CDKT PG MG ++ Sbjct: 82 SLGE-----TQMKPTAMLFRNLLAMDVEESIRAYGIDGVVLLGGCDKTTPGQLMGAASVD 136 Query: 141 IPGFLLYGGSIAPGHWRGKEI-TIQHVYEAIGAVAAGKMTDEELKEIEDAACPGPGACGG 199 +P ++ G + G W+GK+I + V++ AV AG+MT ++ E G C Sbjct: 137 LPAIVVSSGPMLNGKWQGKDIGSGTDVWKFSEAVRAGEMTLQDFMAAESGMSRSKGVCMT 196 Query: 200 QYTANTMATVMEIIGLSPMGTAAVPAADPRKDSVGYRAGQLIMDVLRRDLKPRDILTRAA 259 TA+TMA+++E +G+S AA+PA D R+ ++ + G+ I++++ D+KP D+LTR A Sbjct: 197 MGTASTMASLVEAMGMSLPTNAALPAVDARRMALAHLTGKRIVEMVEEDIKPSDVLTREA 256 Query: 260 FENAIASVALTGGSTNAVLHLLALAREAGVPLTLDDFDAISRRTPLCCDLMPSGKYSAIH 319 F NAI + A GGSTNAV+HLLALA G L+LDDFD + PL + MPSGKY Sbjct: 257 FVNAIMANAAVGGSTNAVVHLLALAGRVGAELSLDDFD-LGSDIPLLVNCMPSGKYLMED 315 Query: 320 VDQAGGIQVIARRLVDGGFAHGDAITVTGRTLAEEAADAVETPGQDVIRPLDNPIKPTGG 379 AGG+ V+ ++L D G + + G LA A+ E DVI+ D P+KP G Sbjct: 316 FCYAGGMPVVLKQLADNGHLRSNTTVLGGDILA--YAEGAECFNDDVIKSFDEPVKPAAG 373 Query: 380 LLVLRGNLAPEGSVVKLFGY--ERTYHRGPARVFDGEEAAMAAIVGGE--IRPDDIVIIR 435 L VLRGNLAP G++VK H G A VF+ E A I + + D I++++ Sbjct: 374 LRVLRGNLAPNGAIVKPSAATDHLLEHEGVAHVFETIEDMKANIDRDDLPVTKDSILVLK 433 Query: 436 YEGPRGGPGMREM--LGVTSAIVGAGLGQSVSLITDGRFSGATRGVMIGHVAPEAARGGP 493 GP+G PGM E+ + + +V G+ + I+DGR SG G +I HV+PE+ GGP Sbjct: 434 GVGPKGYPGMPEVGNMPIPRKLVREGVRDMIR-ISDGRMSGTAFGTVILHVSPESQAGGP 492 Query: 494 LAIVQEGDEIEINLDERRVDLLLSEEEIADRLLAWQPPAPRYEWGVMARYGALVSSASEG 553 L +VQ GD I ++ +DLL+SEEE+ R AWQP Y G Y V A +G Sbjct: 493 LGLVQTGDRIRVSAKNGTLDLLVSEEELTARREAWQPEPLHYTRGYAKLYVDSVLQAEKG 552 Query: 554 AVL 556 A L Sbjct: 553 ADL 555 Lambda K H 0.319 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 858 Number of extensions: 46 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 559 Length of database: 571 Length adjustment: 36 Effective length of query: 523 Effective length of database: 535 Effective search space: 279805 Effective search space used: 279805 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory