Align Acetolactate synthase large subunit; AHAS; EC 2.2.1.6; Acetohydroxy-acid synthase large subunit; ALS; Vegetative protein 105; VEG105 (uncharacterized)
to candidate GFF1219 PGA1_c12350 acetolactate synthase, catabolic
Query= curated2:P37251 (574 letters) >FitnessBrowser__Phaeo:GFF1219 Length = 554 Score = 173 bits (439), Expect = 1e-47 Identities = 158/555 (28%), Positives = 240/555 (43%), Gaps = 30/555 (5%) Query: 6 QVDSASAECTQTMSGALMLIESLKKEKVEMIFGYPGGAVLPIYDKLYNSGLVHILPRHEQ 65 + +SA+A T + A +L + L FG PGG VL + D L +G+ L +HE Sbjct: 3 ETNSAAAAATDPLRAADVLAQRLYAAGCRHAFGMPGGEVLTLVDALTKAGISFHLAKHEN 62 Query: 66 GAIHAAEGYARVSGKPGVVIATSGPGATNLVTGLADAMIDSLPLVVFTGQVATSVIGSDA 125 A EG G P +++AT GPGA N V +A+A D +P++V TG V + + Sbjct: 63 SAGFMGEGVYHSDGAPVILVATLGPGALNGVNVVANAHQDRVPMLVLTGCVDAAEAATYT 122 Query: 126 FQEADILGITMPVTKHSYQVRQPEDLPRIIKEAFHIATTGRPGPVLIDIPKDVATIEGEF 185 Q D + P+TK +Y++ E I +A IAT R GPV ID+P VA Sbjct: 123 HQVLDHQAVFAPITKATYRL-NAEAAGVIADKALRIATQPRNGPVHIDVPISVADAP--- 178 Query: 186 SYDHEMNLPGYQPTTEPNYLQIRKLVEAVSSAKKPVILAGAGVLHGKASEELKNYAEQQQ 245 + H L + T+P + + ++ A +PV + G + A L+ + E Q Sbjct: 179 AGPHRPYLAPAR-ATQPQPADLAQARAWLAEADRPVAVVGLDAVAEDAGASLRAFLEHYQ 237 Query: 246 IPVAHTLLGLGGFPADHPLFLGMAGMHGTYTANM--ALHECDLLISIGARFDDRVTGNLK 303 IP + G P DHPL LG AG+ ++ L E DL++++G +D ++ Sbjct: 238 IPFVTSYKAKGILPEDHPLCLGGAGLSPLADRHLLPLLREADLILALG--YDPI---EMR 292 Query: 304 HFARNA----KIAHIDIDPAEIGKIMKT-QIPVVGDSKIVLQELIKQDGKQSDSSEWKKQ 358 RNA + IDI + M T + VV L+ L D+ + Sbjct: 293 PGWRNAWDCSRQRVIDICAEDNTHYMHTASLTVVAGLAPSLRALTVGAQLADDAPQGN-- 350 Query: 359 LAEWKEEYPLWYVDNEEEGFK------PQKLIEYIHQFTKGEAIVATDVGQHQMWSAQFY 412 A W + P D F P +I + + D G H++ +Q + Sbjct: 351 -AHWPDGQPEAARDALAAAFAADADWGPAAIIAECQATLPADTLATADSGAHRILLSQMW 409 Query: 413 PFQKADKWVTSGGLGTMGFGLPAAIGAQLAEKDATVVAVVGDGGFQMTLQELDVIRELNL 472 + + S GL TMG +P AIG +LAE TVV+ GD GF M EL EL + Sbjct: 410 HCYEPRALIQSSGLCTMGCAVPMAIGRKLAEPQRTVVSFSGDAGFLMVAGELSTAAELGV 469 Query: 473 PVKVVILNNACLGMVRQWQEIFYEERYSESKF-ASQPDFVKLSEAYGIKGIRISSEAEAK 531 V+ +A L ++ Q + R + DF + A+G G+R+ A + Sbjct: 470 APIFVVFVDASLALIDLKQR---QRRLDNAGVDFGLHDFAAMGRAFGGNGVRVRDRASLR 526 Query: 532 EKLEEALTSREPVVI 546 L EA + VI Sbjct: 527 AALSEAQQAERFTVI 541 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 683 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 574 Length of database: 554 Length adjustment: 36 Effective length of query: 538 Effective length of database: 518 Effective search space: 278684 Effective search space used: 278684 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory