Align 4-aminobutyrate aminotransferase GabT; (S)-3-amino-2-methylpropionate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.22 (characterized)
to candidate PP_4108 PP_4108 putative 4-aminobutyrate aminotransferase
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__Putida:PP_4108 Length = 416 Score = 356 bits (913), Expect = e-103 Identities = 187/417 (44%), Positives = 259/417 (62%), Gaps = 12/417 (2%) Query: 13 QAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKVVAAVEAQLKK 72 ++I + + +HPI N VWD +G+ Y+DF GGI VLN GH +P VV A++AQ + Sbjct: 4 ESISQSIAIVHPITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATR 63 Query: 73 LSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIARAATKRSGTI 132 L+H F + PYL L E ++Q VP + +L +G+EA ENA+K+AR AT + I Sbjct: 64 LTHYAFNAAPHGPYLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVARGATGKRAII 123 Query: 133 AFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDDAIASIHRIFK 192 AF G +HGRT TL L GKV PY +G +PG VY YP G++ + A+ ++ R+F Sbjct: 124 AFDGGFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFS 183 Query: 193 NDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQSGAGRTGTLF 252 + A ED+AA + EPVQGEGGF A PAF Q LR CDE GI++I DE+QSG GRTG F Sbjct: 184 VELAVEDVAAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRF 243 Query: 253 AMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNPIACVAALEVL 312 A ++G+ PDL AKSIAGG PL V GR E+M A+ GGLGGTY+GNPI+C AAL L Sbjct: 244 AFPRLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASL 303 Query: 313 KVFEQENLLQKANDLGQKLKDGLLAIAEK------HPEIGDVRGLGAMIAIELFEDGDHN 366 ENL G++ + +++ E+ P IG + G+GAM IE F + D + Sbjct: 304 AQMTDENLA----TWGERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIE-FANADGS 358 Query: 367 KPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEIISQCFDE 423 A+L A+++ AR +GL+L+ G +++R+L PLTIE + +GL+I+ QC E Sbjct: 359 PAPAQL-AKVMEAARARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAE 414 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 525 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 416 Length adjustment: 32 Effective length of query: 394 Effective length of database: 384 Effective search space: 151296 Effective search space used: 151296 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory