Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate 6937660 Sama_1810 phosphogluconate dehydratase (RefSeq)
Query= curated2:A8AB39 (552 letters) >FitnessBrowser__SB2B:6937660 Length = 608 Score = 254 bits (648), Expect = 9e-72 Identities = 179/527 (33%), Positives = 272/527 (51%), Gaps = 37/527 (7%) Query: 21 ASGLIDEELRRPL----IGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGTI-A 75 A G D++ R L IG+ ++N+++ H + E +KA G G + A Sbjct: 51 ACGAEDKQSLRQLTKVNIGIVTAFNDMLSAHQPYEHYPELLKAACNEVGSVAQVAGGVPA 110 Query: 76 VCDGIAMGHEGMRYSLPSREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARL-E 134 +CDG+ G GM SL SREVIA + + + D +++ CDKI PG L+ A Sbjct: 111 MCDGVTQGQPGMELSLLSREVIAMATAVGLSHNMFDGALLLGVCDKIVPGLLIGAMSFGH 170 Query: 135 VPVILINGGPMMPGVYGKERIDFKDLMERMNVLIKEGRT--EELRKLEESALPGPGSCAG 192 +P++ + GPM G+ KE+ R+ EG+ E L + E S+ G+C Sbjct: 171 LPMLFVPAGPMRSGIPNKEKA-------RVRQKFAEGKVDREALLEAEASSYHSAGTCTF 223 Query: 193 LFTANTMNMLSEAMGLMLPGASTVPAVEARRLWYAKLTGMRIVKMVEEGLTPD---KILT 249 TAN+ ++ E MGL LPG+S V + R +K+ ++ ++ E GL +I+ Sbjct: 224 YGTANSNQLVLEVMGLQLPGSSFVNPDDPLRTELSKMAAKQVCRLTENGLQYSPIGEIVN 283 Query: 250 RKALENAIAVDMALGGSTNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHF 309 K++ N I +A GGSTN +H+ A A GI + + F E+S VP +A + P+G Sbjct: 284 EKSVVNGIVALLATGGSTNLTMHIVAAARAAGIIINWDDFSELSDAVPLLARVYPNGHAD 343 Query: 310 VVDLDRAGGIPAVLKELGEAGLIHKDALTVTGKTVWENVKDAAV--------------LD 355 + AGG+ ++KEL +AGLIH+D TV G + ++ + LD Sbjct: 344 INHFHAAGGMAFLMKELLDAGLIHEDVNTVAGYGLRRYTQEPRLIDGQLTWVDGPVTSLD 403 Query: 356 REVIRPLDNPYSPFGGLAILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAI 415 +EV+R + P+ GGL ++KG+L AV+K SAV+ + + A V D + Sbjct: 404 QEVLRGVAEPFQSNGGLKLMKGNL--GRAVIKVSAVQEQHRIVEAPAVVIDDQNKLDALF 461 Query: 416 RGGEIEPGTVIVIRYEGPRGGPGMREMLTATAAVMAL-GLGDKVALVTDGRFSGAT-RGP 473 + GE++ V+V++ +GP+ GM E+ T + L G KVAL+TDGR SGA+ + P Sbjct: 462 KAGELDRDCVVVVKGQGPKAN-GMPELHKLTPILGTLQDRGFKVALMTDGRMSGASGKVP 520 Query: 474 AIGHVSPEAAAGGPIALVQDGDEIVIDIEKRRLDLLVDEKELEERRA 520 A H++PEA GG IA VQDGD I I+ L LLV ELE R A Sbjct: 521 AAIHLTPEALDGGLIAKVQDGDLIRINAITGELSLLVSAPELESRTA 567 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 799 Number of extensions: 47 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 608 Length adjustment: 36 Effective length of query: 516 Effective length of database: 572 Effective search space: 295152 Effective search space used: 295152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory