GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Synechococcus elongatus PCC 7942

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate Synpcc7942_1794 Synpcc7942_1794 succinyldiaminopimelate transaminase

Query= SwissProt::Q2RK33
         (390 letters)



>FitnessBrowser__SynE:Synpcc7942_1794
          Length = 392

 Score =  335 bits (859), Expect = 1e-96
 Identities = 160/386 (41%), Positives = 244/386 (63%), Gaps = 2/386 (0%)

Query: 4   ARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPENHR 63
           ++R+  L   +FA +++  A A   G ++I L +G  D+P P HV+  + A   +P  H 
Sbjct: 7   SQRLAPLQRNVFADMDRAKAVAIAAGREVIDLSLGSSDLPAPDHVVAVIAASLQDPSTHG 66

Query: 64  YPTSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINLVPD 123
           Y   +G L FRQ  A WY+R +G+ +DP  EV+ LIGS+EG AH+ L  ++PG+I L+ D
Sbjct: 67  YLLHQGTLPFRQVAAAWYERKFGLGVDPETEVLLLIGSQEGTAHLPLAVMEPGEIALLQD 126

Query: 124 PGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGAVAD 183
           PGYP +  G  LAGGE Y +P TA  GFLPD   IP+++  R++L+ ++YP+NPT A+A 
Sbjct: 127 PGYPSHAGGVYLAGGEIYRLPTTADRGFLPDFSTIPTEILSRSRLLVLSYPHNPTTAIAP 186

Query: 184 LKFFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQAPGAKEVGIEFNSVSKPYNMT 243
           L FF+E V F R + L++ HD  Y ++ +DG   PS  QA   K+  IEF S+SK YNM 
Sbjct: 187 LAFFEEAVAFCRHHQLVLAHDFPYPDLGFDGVEVPSIFQADRQKQQAIEFFSLSKSYNMG 246

Query: 244 GWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQERRDI 303
           G+R+G+A G A++I AL R+K+ +D   +Q +    IAALTGPQ  +   R+ +++RRDI
Sbjct: 247 GFRVGFAIGNAELIGALRRLKAVVDFNQYQGILAGAIAALTGPQACVEATRQRFRDRRDI 306

Query: 304 IVEGFNSLGWHLEKPKATFYVWAPVPRGYTSAS--FAEMVLEKAGVIITPGNGYGNYGEG 361
            +    + GW + KP +T Y+WAP+P  + + S  F E ++ + GV  +PG G+G+ GEG
Sbjct: 307 FINALAATGWTIPKPVSTMYLWAPLPEPWQTRSLEFCEKLVAETGVAASPGIGFGDCGEG 366

Query: 362 YFRIALTISKERMQEAIERLRRVLGK 387
           + R AL   ++R++EA  R+ + L +
Sbjct: 367 FVRFALVHDRDRLEEAARRITQFLAR 392


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 443
Number of extensions: 17
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 392
Length adjustment: 31
Effective length of query: 359
Effective length of database: 361
Effective search space:   129599
Effective search space used:   129599
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory