Align Gamma-glutamyl phosphate reductase 2; GPR 2; EC 1.2.1.41; Glutamate-5-semialdehyde dehydrogenase 2; Glutamyl-gamma-semialdehyde dehydrogenase 2; GSA dehydrogenase 2 (uncharacterized)
to candidate Synpcc7942_2243 Synpcc7942_2243 Glutamate-5-semialdehyde dehydrogenase
Query= curated2:Q55167 (420 letters) >lcl|FitnessBrowser__SynE:Synpcc7942_2243 Synpcc7942_2243 Glutamate-5-semialdehyde dehydrogenase Length = 414 Score = 377 bits (968), Expect = e-109 Identities = 190/386 (49%), Positives = 266/386 (68%), Gaps = 2/386 (0%) Query: 32 RSRAVLAMAEALERSFAQILEANTLDLVVSREMSVADCLCEWLKLTPERLQNTVTILKRL 91 RS+A+ A+A+A++ + ILEANTLDL ++ + D L WLKLTPERL TV IL+RL Sbjct: 27 RSQALQAIAQAIDSARDDILEANTLDLEACQDSEMPDLLRRWLKLTPERLDRTVEILERL 86 Query: 92 ASLPDPLQRVMASPYQFNLAQTYCQLMPLGVVALVYESFPELAAIAAGFCLKTGNSLVLR 151 + DP+Q+VM + +Q +Q Y QLMPLGV+A VYE+ PELAAIA G CL+ GNS++L+ Sbjct: 87 SVRSDPIQQVMRASFQHEHSQAYSQLMPLGVIAFVYEALPELAAIATGLCLRVGNSILLK 146 Query: 152 SCGASSHSTAAICEILREGLLDADLPVDSVSHIP-SETSPNVQDLVGNASQLNLVIPYGR 210 + H+ AI +++E L +LP S+ +P + + ++ LV ++LVIPYGR Sbjct: 147 GGTEAVHTNQAIVSVMQEALESTELPTTSLILLPEDDPATSLAALVTQDQWIDLVIPYGR 206 Query: 211 PSFVEQISQQCTPPVLKAAMGNCYLYWSSKGDLEMVRQMIIDSHVGHPDPVNAIEKVLVS 270 P V+Q+++ T PVL+ +MGNCYLYW+S G+LE VR MI+DSH PD VNAIEKVL+ Sbjct: 207 PELVQQVARLATSPVLRTSMGNCYLYWASGGELETVRWMILDSHASEPDAVNAIEKVLID 266 Query: 271 PGQNPAPLVRLLNNLQAKGFKLRGDAELCEQFPDHLTLAKENEWGKAYLDRTVAFRTTQN 330 N + L L+++L++KGF+L+GD EL ++ P+ L LA+ +W + YL RTVAF+ Sbjct: 267 RDCNLSKLTVLMDSLRSKGFRLKGDEELVQEMPE-LELARHEDWSRPYLSRTVAFKLVPG 325 Query: 331 LKTAIAWINSHSSGHGDCIATDSYQESRQFSMGVDSALVYVNIPPYFCRNPRHGESLFLG 390 ++ A WIN+HSSGH D I TDSY++SR FS ++SA+V+VN P F R+PRH + LG Sbjct: 326 IEAATDWINTHSSGHADSIVTDSYEDSRAFSRELNSAMVHVNASPRFSRSPRHSNEIALG 385 Query: 391 VSSQKGQRRGLIGLEAFMTPKQIVQG 416 +S+QKG RRG I LE T KQ+V G Sbjct: 386 MSNQKGYRRGRITLETLTTIKQVVLG 411 Lambda K H 0.319 0.133 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 468 Number of extensions: 17 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 420 Length of database: 414 Length adjustment: 31 Effective length of query: 389 Effective length of database: 383 Effective search space: 148987 Effective search space used: 148987 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory