GapMind for Amino acid biosynthesis

 

Alignments for a candidate for aroA in Pseudomonas simiae WCS417

Align 3-phosphoshikimate 1-carboxyvinyltransferase (EC 2.5.1.19) (characterized)
to candidate GFF2521 PS417_12855 3-phosphoshikimate 1-carboxyvinyltransferase

Query= BRENDA::A1Z0H6
         (444 letters)



>FitnessBrowser__WCS417:GFF2521
          Length = 418

 Score =  790 bits (2041), Expect = 0.0
 Identities = 395/417 (94%), Positives = 408/417 (97%)

Query: 27  LSSQKTVTVTPPNFPLTGKVAPPGSKSITNRALLLAALAKGTSRLSGALKSDDTRHMSVA 86
           +SSQKTVTVTPPNFPL GKVAPPGSKSITNRALLLAALA GTSRLSGALKSDDTRHMSVA
Sbjct: 1   MSSQKTVTVTPPNFPLNGKVAPPGSKSITNRALLLAALANGTSRLSGALKSDDTRHMSVA 60

Query: 87  LRQMGVTIDEPDDTTFVVTSQGSLQLPAQPLFLGNAGTAMRFLTAAVATVQGTVVLDGDE 146
           LRQMGVTIDEPDDTTFVVT QG LQLP+QPLFLGNAGTAMRFLTAAVATV+GTVVLDGD+
Sbjct: 61  LRQMGVTIDEPDDTTFVVTGQGKLQLPSQPLFLGNAGTAMRFLTAAVATVEGTVVLDGDD 120

Query: 147 YMQKRPIGPLLATLGQNGIQVDSPTGCPPVTVHGMGKVQAKRFEIDGGLSSQYVSALLML 206
           YMQKRPIGPLLATLGQNGI VDSPTGCPPVTVHG+GK++AKRFEIDGGLSSQYVSALLML
Sbjct: 121 YMQKRPIGPLLATLGQNGILVDSPTGCPPVTVHGVGKIKAKRFEIDGGLSSQYVSALLML 180

Query: 207 AACGEAPIEVALTGKDIGARGYVDLTLDCMRAFGAQVDAVDDTTWRVAPTGYTAHDYLIE 266
           AACGEAPIEVALTGKDIGARGYVDLTLDCMRAFGAQV+AVDDTTWRVAPTGYTAHDYLIE
Sbjct: 181 AACGEAPIEVALTGKDIGARGYVDLTLDCMRAFGAQVEAVDDTTWRVAPTGYTAHDYLIE 240

Query: 267 PDASAATYLWAAEVLTGGRIDIGVAAQDFTQPDAKAQAVIAQFPNMQATVVGSQMQDAIP 326
           PDASAATYLWAAEVLTGGRIDIGVAAQDFTQPDAKAQAVIAQFPNMQATVVGSQMQDAIP
Sbjct: 241 PDASAATYLWAAEVLTGGRIDIGVAAQDFTQPDAKAQAVIAQFPNMQATVVGSQMQDAIP 300

Query: 327 TLAVLAAFNNTPVRFTELANLRVKECDRVQALHDGLNEIRPGLATIEGDDLLVASDPALA 386
           TLAVLAAFNNTPVRFTELANLRVKECDRVQALHDGLNEIRPGLATIEGDDLLVASDPALA
Sbjct: 301 TLAVLAAFNNTPVRFTELANLRVKECDRVQALHDGLNEIRPGLATIEGDDLLVASDPALA 360

Query: 387 GTACTALIDTHADHRIAMCFALAGLKVSGVRIQDPDCVAKTYPDYWKAWPSLGVHLN 443
           GT+C ALIDTHADHRIAMCFALAGLKV+G+RIQDPDCVAKTYP+YWKA  SLGV L+
Sbjct: 361 GTSCNALIDTHADHRIAMCFALAGLKVAGIRIQDPDCVAKTYPEYWKALGSLGVQLS 417


Lambda     K      H
   0.318    0.134    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 760
Number of extensions: 13
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 444
Length of database: 418
Length adjustment: 32
Effective length of query: 412
Effective length of database: 386
Effective search space:   159032
Effective search space used:   159032
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory