Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate GFF2156 PS417_11000 dihydroxy-acid dehydratase
Query= curated2:B9MPM8 (552 letters) >FitnessBrowser__WCS417:GFF2156 Length = 578 Score = 369 bits (948), Expect = e-106 Identities = 217/544 (39%), Positives = 321/544 (59%), Gaps = 20/544 (3%) Query: 16 RSLFKAMGYTDEEIR-RPLIAVVNSWNEVVPGHIHLDRIAEAVKAGIRLAGATPMEFNVI 74 RS K G D + +P+I + N+W+E+ P + H +IAE VK G+ AG P+EF V Sbjct: 25 RSWMKNQGIADHQFHGKPIIGICNTWSELTPCNAHFRQIAEHVKRGVIEAGGFPVEFPVF 84 Query: 75 GVCDGIAMGHIGMK-YSLITRELIADSIEAMVMAHQFDGMVLIPNCDKIVPGMLIAAARV 133 + G ++ +++TR L + +E + + DG+VL+ CDK P +L+ AA Sbjct: 85 ------SNGESNLRPTAMLTRNLASMDVEEAIRGNPIDGVVLLTGCDKTTPALLMGAASC 138 Query: 134 NIPAILISGGPMLAGKI-GDKVCDLNSVFEGVGAYSAGKISEEDLYALEENACPGCGSCS 192 ++PAI+++GGPML GK G + V++ AG I+ +D A E G+C+ Sbjct: 139 DVPAIVVTGGPMLNGKHKGQDIGSGTVVWQLSEQVKAGTITLDDFLAAEGGMSRSAGTCN 198 Query: 193 GMFTANTMNCLSEVLGLALPGNGTIPAVMAARIRLAKMAGMKIVELVEKDIKPSDILTVE 252 M TA+TM C++E LG +LP N IPAV A R LA M+GM+ VE+V +D+K S ILT E Sbjct: 199 TMGTASTMACMAEALGTSLPHNAAIPAVDARRYVLAHMSGMRAVEMVREDLKLSKILTKE 258 Query: 253 AFENALAVDMALGGSTNTILHLPAIANEVGIKLNLDIINAISDRTPNLCKLSPAGQHHIE 312 AFENA+ V+ A+GGSTN ++HL AIA +G++L+LD I P + L P+G+ +E Sbjct: 259 AFENAIRVNAAIGGSTNAVIHLKAIAGRIGVELDLDDWTRIGRGMPTIVDLQPSGRFLME 318 Query: 313 DLYFAGGVQAVMNELSKKGLL-HLNLMTVTGKTVGENIKDANVKNYN-VIRPIDNPYSET 370 + Y+AGG+ AV+ L + L+ H N +TV GK++GEN +D+ + + VIR +DNP Sbjct: 319 EFYYAGGLPAVLRRLGEANLIPHPNALTVNGKSLGENTQDSPIYGQDEVIRTLDNPIRAD 378 Query: 371 GGLVIVRGNLAPDGAVVKKSAVPPKLMKHRGPARVFESGEEVFEAILKG---KIQKGDVI 427 GG+ ++RGNLAP GAV+K SA P LM+HRG A VFE+ ++++A + + ++ Sbjct: 379 GGICVLRGNLAPLGAVLKPSAASPALMQHRGRAVVFEN-FDMYKARINDPELDVDANSIL 437 Query: 428 VIRYEGPKGGPGMRE---MLSPTSALAGVGLIEDVALITDGRFSGATRGACFGHVSPEAA 484 V++ GPKG PGM E M P LA + D+ I+D R SG G HV+PEAA Sbjct: 438 VMKNCGPKGYPGMAEVGNMGLPAKLLAQG--VTDMVRISDARMSGTAYGTVVLHVAPEAA 495 Query: 485 ERGPIAAVQDGDMISIDIENKTLTLEVPEEEIKRRLEILPPFEPKVKKGYLYRYSKLVRS 544 GP+A V++GD I +D N L L++P+ E+ R+ L P + + GY Y V Sbjct: 496 AGGPLATVKEGDWIELDCANGRLHLDIPDAELAARMADLAPPQKLIVGGYRQLYIDHVLQ 555 Query: 545 ASTG 548 A G Sbjct: 556 ADQG 559 Lambda K H 0.318 0.137 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 792 Number of extensions: 43 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 578 Length adjustment: 36 Effective length of query: 516 Effective length of database: 542 Effective search space: 279672 Effective search space used: 279672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory