GapMind for Amino acid biosynthesis

 

Alignments for a candidate for glyA in Acidovorax sp. GW101-3H11

Align glycine hydroxymethyltransferase (EC 2.1.2.1) (characterized)
to candidate Ac3H11_2921 Serine hydroxymethyltransferase (EC 2.1.2.1)

Query= BRENDA::B4ECY9
         (415 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_2921
          Length = 414

 Score =  648 bits (1671), Expect = 0.0
 Identities = 322/415 (77%), Positives = 358/415 (86%), Gaps = 1/415 (0%)

Query: 1   MFDRAQSTIANVDPEIFAAIEQENRRQEDHIELIASENYTSPAVMAAQGSQLTNKYAEGY 60
           M+DR    +   DPE+FAAI+ EN RQE HIELIASENY SPAVM AQG+QLTNKYAEGY
Sbjct: 1   MYDR-NILVEQTDPEVFAAIQAENARQEHHIELIASENYASPAVMWAQGTQLTNKYAEGY 59

Query: 61  PGKRYYGGCEYVDVVEQLAIDRVKQLFGAEAANVQPNSGSQANQGVFFAMLKPGDTIMGM 120
           PGKRYYGGCE+VDV EQLAIDRVK++FGA+AANVQP+ G+ AN+ VF A LKPGDTIMGM
Sbjct: 60  PGKRYYGGCEHVDVAEQLAIDRVKKIFGADAANVQPHCGASANEAVFLAFLKPGDTIMGM 119

Query: 121 SLAHGGHLTHGSPVNMSGKWFNVVSYGLNENEDIDYDAAEKLANEHKPKLIVAGASAFAL 180
           SLA GGHLTHG P+NMSGKWFNVVSYGL++NE IDYDA E  A EHKPKLIVAGASA++L
Sbjct: 120 SLAEGGHLTHGMPLNMSGKWFNVVSYGLDKNEAIDYDAMEAKAREHKPKLIVAGASAYSL 179

Query: 181 KIDFERLAKIAKSVGAYLMVDMAHYAGLIAAGVYPNPVPHADFVTTTTHKSLRGPRGGVI 240
            IDFER AKIAK +GA  MVDMAHYAGLIAAGVYPNPVPHAD VT+TTHKSLRGPRGG+I
Sbjct: 180 HIDFERFAKIAKEIGAIFMVDMAHYAGLIAAGVYPNPVPHADVVTSTTHKSLRGPRGGII 239

Query: 241 LMKAEYEKPINSAIFPGIQGGPLMHVIAAKAVAFKEALSPEFKEYQQKVVENARVLAETL 300
           LMKAE+EK INSAIFPG+QGGPLMHVIAAKAVAFKEA+ PEFK YQ++V +NA+V+AETL
Sbjct: 240 LMKAEHEKAINSAIFPGLQGGPLMHVIAAKAVAFKEAMQPEFKAYQEQVAKNAKVVAETL 299

Query: 301 VKRGLRIVSGRTESHVMLVDLRAKHITGKAAEAALGAAHITVNKNAIPNDPEKPFVTSGI 360
             RGLRIVSG T+SHVMLVDLRAK ITGK AEA LGAAH+T+NKNAIPNDPEKP VTSG+
Sbjct: 300 TARGLRIVSGGTQSHVMLVDLRAKGITGKEAEAVLGAAHMTINKNAIPNDPEKPMVTSGV 359

Query: 361 RLGSPAMTTRGFGPAEAEQVGNLIADVLENPEDAATIERVRAQVAELTKRFPVYR 415
           R+G+PAMTTRGF   EA    NLIADVL+NP D A I  VRA+V  LT RFPVYR
Sbjct: 360 RIGTPAMTTRGFKEEEARITANLIADVLDNPRDEANIAAVRAKVNALTARFPVYR 414


Lambda     K      H
   0.316    0.132    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 612
Number of extensions: 14
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 415
Length of database: 414
Length adjustment: 31
Effective length of query: 384
Effective length of database: 383
Effective search space:   147072
Effective search space used:   147072
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory