Align acetolactate synthase (EC 2.2.1.6) (characterized)
to candidate AZOBR_RS23050 AZOBR_RS23050 decarboxylase
Query= BRENDA::O53554 (515 letters) >FitnessBrowser__azobra:AZOBR_RS23050 Length = 515 Score = 476 bits (1226), Expect = e-139 Identities = 270/516 (52%), Positives = 330/516 (63%), Gaps = 11/516 (2%) Query: 3 GAQALINTLVDGGVDVCFANPGTSEMHFVAALDAVPRMRGMLTLFEGVATGAADGYARIA 62 GA+ L+ TLV GVD CFANPGTSE+H +AA D++P R + TLFEGVATGAADGYAR+ Sbjct: 3 GAEILVRTLVANGVDTCFANPGTSELHALAAFDSMPGARCVPTLFEGVATGAADGYARMT 62 Query: 63 GRPAAVLLHLGPGLGNGLANLHNARRARVPMVVVVGDHATYHKKYDAPLESDIDAVAGTV 122 RPAA LLHLGPGL NGLANLHNARRA VPMV +VGDHAT+H+ DAPL SD++ +A + Sbjct: 63 DRPAATLLHLGPGLANGLANLHNARRACVPMVNIVGDHATWHRGVDAPLTSDVEGLAKPM 122 Query: 123 SGWVRRTEAAADVGAD-AEAAIAASRSGSQIATLILPADVCWSDGAHAAAGV---PAQAA 178 S WVR AA V AD AEA AA ++TLILP+D W D A A + PA AA Sbjct: 123 SAWVRTVPDAASVAADTAEAIRAALTPPCGVSTLILPSDSSWDDTAAAEPIIVEPPAPAA 182 Query: 179 AAPVDVGPVAGVLRSGEPAMMLIGGDATRGPGLTAAARIVQATGARWLCETFPTCLERGA 238 + A LRSGE ++L+ G ATR GL A RI ATGA+ T T +ERGA Sbjct: 183 PDADALRAAADALRSGERVVVLLNGRATRTEGLALAGRIAAATGAKLYAHTGATRIERGA 242 Query: 239 GIPAVERLAYFAEGAAAQLDGVKHLVLAGARSPVSFFAYPGMPSDLVPAGCEVHVLAEPG 298 G VER Y + A L G KH+VL G+ PV FF YP PS L P C +H +A PG Sbjct: 243 GRVTVERFPYPIDLGIAALAGAKHVVLIGSGEPVGFFGYPDKPSRLAPEDCRIHTVAPPG 302 Query: 299 GAADALAA---LADEV-APGTVAPVAGASRPQLPTGDLTSVSAADVVGALLPERAIVVDE 354 ADALAA LA+ V GT P + P+ TG LT+ S + ALLPE AIVVDE Sbjct: 303 --ADALAALRWLAEAVGCAGTPVPAQPLAPPEPATGALTADSVGQSLAALLPEGAIVVDE 360 Query: 355 SNTCGVLLPQATAGAPAHDWLTLTGGAIGYGIPAAVGAAVAAPDRPVLCLESDGSAMYTI 414 + ++ A AGA AHDWLT+TGGAIG G+P A+GAA+A PDR V+ +++DGS MYT+ Sbjct: 361 GISSSPMVYTACAGARAHDWLTITGGAIGIGMPLALGAAIACPDRKVVTVQADGSGMYTL 420 Query: 415 SGLWSQARENLDVTTVIYNNGAYDILRIELQRVGAGSDPGPKALDLLDISRPTMDFVKIA 474 LWSQARE DV T+I+ N Y IL+ EL +G D GP A + ++ RP +D+V +A Sbjct: 421 QALWSQARERADVVTIIFANRRYGILQWELGNLGF-RDMGPNARNCTELGRPDLDWVALA 479 Query: 475 EGMGVPARRVTTCEEFADALRAAFAEPGPHLIDVVV 510 GMGV + T E F L AAFA GP LI+ V+ Sbjct: 480 RGMGVEGGQATDAESFNRLLTAAFARKGPFLIEAVI 515 Lambda K H 0.318 0.134 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 665 Number of extensions: 32 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 515 Length adjustment: 35 Effective length of query: 480 Effective length of database: 480 Effective search space: 230400 Effective search space used: 230400 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory