GapMind for Amino acid biosynthesis

 

Aligments for a candidate for dapB in Azospirillum brasilense Sp245

Align dihydrodipicolinate reductase; EC 1.3.1.26 (characterized)
to candidate AZOBR_RS01580 AZOBR_RS01580 dihydrodipicolinate reductase

Query= CharProtDB::CH_002128
         (273 letters)



>FitnessBrowser__azobra:AZOBR_RS01580
          Length = 265

 Score =  236 bits (601), Expect = 5e-67
 Identities = 122/265 (46%), Positives = 164/265 (61%)

Query: 6   IRVAIAGAGGRMGRQLIQAALALEGVQLGAALEREGSSLLGSDAGELAGAGKTGVTVQSS 65
           +++ + G  GRMG+ L++   A  G  L    ER G   LG D G LAG    GV     
Sbjct: 1   MKIGVVGCAGRMGQMLVREIAATPGCTLAGGTERVGGPALGKDIGVLAGLEPLGVVAIED 60

Query: 66  LDAVKDDFDVFIDFTRPEGTLNHLAFCRQHGKGMVIGTTGFDEAGKQAIRDAAADIAIVF 125
             A+  + D  IDFT P+ ++ H A   Q    +VIGTTG   A ++AI  AA    IV 
Sbjct: 61  TAALFAEADAVIDFTSPDASVRHAALAAQSETVLVIGTTGIGPAQQEAIAQAATHTPIVQ 120

Query: 126 AANFSVGVNVMLKLLEKAAKVMGDYTDIEIIEAHHRHKVDAPSGTALAMGEAIAHALDKD 185
           + N S+GVN++L L+E+  + +GD  DI+I+E HHR+KVDAPSGTAL +G A A      
Sbjct: 121 SPNMSLGVNLLLALVEQVGRALGDDYDIDILEMHHRNKVDAPSGTALGLGRAAAAGRGVA 180

Query: 186 LKDCAVYSREGHTGERVPGTIGFATVRAGDIVGEHTAMFADIGERLEITHKASSRMTFAN 245
           L+D     R+GHTG R  G IGFAT+R GD++G+HT +FA  GER+E+THKAS R  +A 
Sbjct: 181 LEDVWQKVRDGHTGVRPRGEIGFATLRGGDVIGDHTVVFAAEGERVELTHKASGRQIYAK 240

Query: 246 GAVRSALWLSGKESGLFDMRDVLDL 270
           GAVR+ALW + K+ GL+ M+DVL L
Sbjct: 241 GAVRAALWANDKQPGLYSMKDVLGL 265


Lambda     K      H
   0.319    0.135    0.383 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 248
Number of extensions: 13
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 273
Length of database: 265
Length adjustment: 25
Effective length of query: 248
Effective length of database: 240
Effective search space:    59520
Effective search space used:    59520
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 47 (22.7 bits)

Align candidate AZOBR_RS01580 AZOBR_RS01580 (dihydrodipicolinate reductase)
to HMM TIGR00036 (dapB: 4-hydroxy-tetrahydrodipicolinate reductase (EC 1.17.1.8))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.aa/TIGR00036.hmm
# target sequence database:        /tmp/gapView.19548.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR00036  [M=270]
Accession:   TIGR00036
Description: dapB: 4-hydroxy-tetrahydrodipicolinate reductase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                                 Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                                 -----------
    2.1e-83  265.9   0.7    2.4e-83  265.8   0.7    1.0  1  lcl|FitnessBrowser__azobra:AZOBR_RS01580  AZOBR_RS01580 dihydrodipicolinat


Domain annotation for each sequence (and alignments):
>> lcl|FitnessBrowser__azobra:AZOBR_RS01580  AZOBR_RS01580 dihydrodipicolinate reductase
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  265.8   0.7   2.4e-83   2.4e-83       2     270 .]       1     264 [.       1     264 [. 0.96

  Alignments for each domain:
  == domain 1  score: 265.8 bits;  conditional E-value: 2.4e-83
                                 TIGR00036   2 ikvavaGaaGrmGrevikavkeaedlelvaalerkgsskqgkDiGelagigkvgvpveddleavkvlae 70 
                                               +k++v G aGrmG+ ++++++++++  l++  er g +  gkDiG lag+ ++gv   +d+ a      
  lcl|FitnessBrowser__azobra:AZOBR_RS01580   1 MKIGVVGCAGRMGQMLVREIAATPGCTLAGGTERVGGPALGKDIGVLAGLEPLGVVAIEDTAA----LF 65 
                                               89****************************************************933333332....36 PP

                                 TIGR00036  71 kkadvliDfttpeavlenvkialekgvrlVvGTTGfseedlkelkdlaekkgvalviapNfaiGvnlll 139
                                                +ad +iDft p+a + ++++a++    lV+GTTG+  +++++++++a +  +++v +pN+++Gvnlll
  lcl|FitnessBrowser__azobra:AZOBR_RS01580  66 AEADAVIDFTSPDASVRHAALAAQSETVLVIGTTGIGPAQQEAIAQAATH--TPIVQSPNMSLGVNLLL 132
                                               899***********************************************..***************** PP

                                 TIGR00036 140 kllekaakvle.dvDiEiiElHHrhKkDaPSGTAlklaeiiakargkdlkeaaveeregltGerkkeei 207
                                                l+e++ + l+ d+Di+i+E+HHr+K+DaPSGTAl l+ + a+ rg  l+++  + r+g+tG r + ei
  lcl|FitnessBrowser__azobra:AZOBR_RS01580 133 ALVEQVGRALGdDYDIDILEMHHRNKVDAPSGTALGLGRAAAAGRGVALEDVWQKVRDGHTGVRPRGEI 201
                                               **********7257******************************************************* PP

                                 TIGR00036 208 GiaavRggdvvgehtvlFasdGerleitHkassRaafakGvvrairwledkeekvydledvld 270
                                               G+a++Rggdv+g+htv+Fa +Ger+e+tHkas R+++akG+vra+ w +dk+ ++y ++dvl+
  lcl|FitnessBrowser__azobra:AZOBR_RS01580 202 GFATLRGGDVIGDHTVVFAAEGERVELTHKASGRQIYAKGAVRAALWANDKQPGLYSMKDVLG 264
                                               *************************************************************96 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (270 nodes)
Target sequences:                          1  (265 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.01u 0.01s 00:00:00.02 Elapsed: 00:00:00.01
# Mc/sec: 6.31
//
[ok]

This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory