GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Azospirillum brasilense Sp245

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate AZOBR_RS18890 AZOBR_RS18890 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>FitnessBrowser__azobra:AZOBR_RS18890
          Length = 411

 Score =  298 bits (762), Expect = 5e-85
 Identities = 160/406 (39%), Positives = 261/406 (64%), Gaps = 9/406 (2%)

Query: 341 VVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENPDP 400
           +V+KFGG ++ D+++++ VA K+ +  K+G +  VV+SAM   T+ L++    ID+  D 
Sbjct: 4   IVLKFGGTSVGDIDRIKNVARKVEQEVKAGHQVAVVVSAMSGVTNQLVKYCNDIDKLHDA 63

Query: 401 RELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDIISR 460
           RE D ++++GE  +  L++IAL+  G +A S+ G Q+ I +D+ +G ARI+ I+T  + +
Sbjct: 64  REYDAIVASGEQVTSGLLAIALQSLGIQARSWLGWQIPIYSDETHGKARIVSIDTAELDK 123

Query: 461 YLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTADP 520
            +    + VVAGFQG+TETG ITTLGRGGSD +A+ALA +L AD C++Y DVDGVYT DP
Sbjct: 124 RMNTGEVAVVAGFQGVTETGRITTLGRGGSDTSAVALAAALKADRCDIYTDVDGVYTTDP 183

Query: 521 RIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNAHKETRGT----- 575
           RIV  AR + ++++EEM+EL+  GA+VLQ R+ E A  + V+V + ++ +E  G+     
Sbjct: 184 RIVTKARKLSKITYEEMLELASQGAKVLQTRSVEMAMNHRVRVQVLSSFEEAAGSALPGT 243

Query: 576 -LIWEGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNIDMIIQGM- 633
            ++ E   VE  +V  + +    AK+ L  V D+PGVAA I   L+   VN+DMI+Q + 
Sbjct: 244 LVVDEDEIVEKEVVSGIAYSRDEAKITLIGVADRPGVAASIFGPLTDAAVNVDMIVQNVS 303

Query: 634 KSGEYNTVAFIVPESQLGKLDIDLLKTRSEA--KEIIIEKGLAKVSIVGVNLTSTPEISA 691
           + G+   + F V ++ + +    L   ++E   K I+ +  + KVS++GV + S   ++ 
Sbjct: 304 EDGKSTDMTFTVGKADIARAVKVLEDAQAELNYKRIVSDANVVKVSVIGVGMRSHAGVAQ 363

Query: 692 TLFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELD 737
            +F+ LA++GINI +IS S  +ISV+I  +Y E A++A+H+ + LD
Sbjct: 364 RMFKALADKGINIQVISTSEIKISVLIAEEYAELALRALHTAYGLD 409


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 638
Number of extensions: 29
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 411
Length adjustment: 36
Effective length of query: 703
Effective length of database: 375
Effective search space:   263625
Effective search space used:   263625
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory