Align aspartate 4-decarboxylase (EC 4.1.1.12) (characterized)
to candidate AZOBR_RS30390 AZOBR_RS30390 aspartate aminotransferase
Query= BRENDA::Q53IZ1 (531 letters) >FitnessBrowser__azobra:AZOBR_RS30390 Length = 543 Score = 783 bits (2023), Expect = 0.0 Identities = 381/524 (72%), Positives = 444/524 (84%) Query: 2 SKDYRSLANLSPFELKDELIKVASGKANRLMLNAGRGNPNFLATTPRRAFFRLGLFAAAE 61 S DY A LSPFELKDELIK+ASG+ NRLMLNAGRGNPNFLAT PRRAFFRLGLFA AE Sbjct: 3 SIDYSRYAKLSPFELKDELIKLASGRENRLMLNAGRGNPNFLATLPRRAFFRLGLFAVAE 62 Query: 62 SELSYSYMTVGVGGLAKLDGIEGRFERFIAEHRDQEGVKFLGKSLSYVRDQLGLDPAAFL 121 +ELS+SYM GVGGL +L+GIEGRFER+++EHRDQEGV FLG++LSYVRDQLGL + FL Sbjct: 63 AELSFSYMPNGVGGLPRLEGIEGRFERYVSEHRDQEGVVFLGRALSYVRDQLGLSGSGFL 122 Query: 122 HEMVDGILGCNYPVPPRMLTVSEQIVRQYIVREMAGGAVPPESVDLFAVEGGTAAMAYIF 181 HEMV+G+LG NYPVPPRML +SE +VR Y+V+EM GG +PP SVDLFAVEGGTAAM YIF Sbjct: 123 HEMVEGVLGANYPVPPRMLAISEDVVRHYLVKEMVGGFLPPGSVDLFAVEGGTAAMTYIF 182 Query: 182 ESLRISGLLKAGDKVAIGMPVFTPYIEIPELAQYDLKEVPIHADPDNGWQYSDAELDKLK 241 S++ +GL++ GDKVAIG+PVFTPYIEIPEL +Y L EV I+ADP GWQY DAELDKLK Sbjct: 183 NSMKQNGLVERGDKVAIGLPVFTPYIEIPELDEYGLTEVAINADPAKGWQYPDAELDKLK 242 Query: 242 DPDVKIFFCVNPSNPPSVKMDQRSLDRVRAIVAEQRPDLLILTDDVYGTFADEFQSLFSV 301 DP VK+FFCVNPSNPPSVKMD RSLDR+ AIV +R DL+ILTDDVYGTFAD F+SLF+V Sbjct: 243 DPAVKVFFCVNPSNPPSVKMDDRSLDRIAAIVKNERKDLIILTDDVYGTFADNFRSLFAV 302 Query: 302 CPRNTLLVYSFSKYFGATGWRLGVIAAHKDNVFDHALSQLPESAKKALDHRYRSLLPDVR 361 CP NT+LVYSFSKYFGATGWRLGVIA HK NV D ++ LPE K ALD RY SL+PDVR Sbjct: 303 CPENTMLVYSFSKYFGATGWRLGVIATHKTNVCDQRIAALPEERKAALDRRYGSLVPDVR 362 Query: 362 SLKFIDRLVADSRVVALNHTAGLSTPQQVQMVLFSLFALMDEADAYKQALKQLIRRREAT 421 L+FIDRLVADSR VALNHTAGLSTPQQVQMVLFSLFALMDE D YK LK++IRRREA Sbjct: 363 GLRFIDRLVADSRTVALNHTAGLSTPQQVQMVLFSLFALMDEQDGYKAELKKVIRRREAA 422 Query: 422 LYRELGMPPLENPNSVNYYTLIDLQNVTCRLYGEAFSQWAVQQSSTGDMLFRVADETGIV 481 LYRELG+P L +PN+V+YYTL+DL+++ +LYG ++ W D+LFR+A ETGIV Sbjct: 423 LYRELGLPTLSDPNAVDYYTLLDLEDIALKLYGPDYAAWVKANFVPNDLLFRIAAETGIV 482 Query: 482 LLPGRGFGSDRPSGRASLANLNEYEYAAIGRALRRLADELYEQY 525 LLPG+GFG+ +P+ R SLANLNEYEYAAIGR+LR +AD+ +E++ Sbjct: 483 LLPGKGFGTLQPAARVSLANLNEYEYAAIGRSLRGMADQSHEEF 526 Lambda K H 0.321 0.138 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 909 Number of extensions: 27 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 531 Length of database: 543 Length adjustment: 35 Effective length of query: 496 Effective length of database: 508 Effective search space: 251968 Effective search space used: 251968 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory