Align 4-aminobutyrate aminotransferase GabT; (S)-3-amino-2-methylpropionate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.22 (characterized)
to candidate GFF3586 Psest_3653 4-aminobutyrate aminotransferase, prokaryotic type
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__psRCH2:GFF3586 Length = 426 Score = 646 bits (1667), Expect = 0.0 Identities = 317/421 (75%), Positives = 362/421 (85%) Query: 3 SNKELMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKV 62 +N+ LMQRR A+PRGVGQIHPIFAD A+N V DVEGRE++DFAGGIAVLNTGHLHPK+ Sbjct: 4 TNESLMQRRVAAVPRGVGQIHPIFADHAKNSSVVDVEGREFIDFAGGIAVLNTGHLHPKI 63 Query: 63 VAAVEAQLKKLSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIA 122 + AVE QL KL+HTCFQVLAYEPY+ELCE +N +VPGDFAKKTLLVTTGSEAVENAVKIA Sbjct: 64 IKAVEDQLHKLTHTCFQVLAYEPYVELCEKINARVPGDFAKKTLLVTTGSEAVENAVKIA 123 Query: 123 RAATKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDD 182 RAAT R+G IAF+GAYHGRT TL LTGKV PYSAGMGLMPG ++RALYPC ++G+S DD Sbjct: 124 RAATGRAGVIAFTGAYHGRTMMTLGLTGKVAPYSAGMGLMPGGIFRALYPCAIYGVSVDD 183 Query: 183 AIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQ 242 +IASI RIFKNDA P DIAAI+IEPVQGEGGF + FM RLRALCDEHGI+LIADEVQ Sbjct: 184 SIASIERIFKNDAEPRDIAAIIIEPVQGEGGFNVAPKDFMARLRALCDEHGILLIADEVQ 243 Query: 243 SGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNP 302 +GAGRTGT FAMEQMGV DLTTFAKS+ GGFP+AGV G+AE+MDA+APGGLGGTYAGNP Sbjct: 244 TGAGRTGTFFAMEQMGVVADLTTFAKSVGGGFPIAGVCGKAEIMDAIAPGGLGGTYAGNP 303 Query: 303 IACVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIAIELFED 362 ++C AAL VL+VFE+E LL + + ++L GL AI KH EIG+VRGLGAMIAIELFED Sbjct: 304 LSCAAALAVLEVFEEEKLLDRCKAVAERLTTGLKAIQTKHKEIGEVRGLGAMIAIELFED 363 Query: 363 GDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEIISQCFD 422 GDH +P A LT++IVARARDKGLILLSCG YYNVLR+LVPLT ED + +GL II +CFD Sbjct: 364 GDHARPAAALTSQIVARARDKGLILLSCGTYYNVLRVLVPLTAEDELLDRGLAIIGECFD 423 Query: 423 E 423 E Sbjct: 424 E 424 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 701 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 426 Length adjustment: 32 Effective length of query: 394 Effective length of database: 394 Effective search space: 155236 Effective search space used: 155236 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory