Align Bifunctional aspartate aminotransferase and glutamate/aspartate-prephenate aminotransferase; PhPPA-AT; EC 2.6.1.1; EC 2.6.1.78; EC 2.6.1.79 (characterized)
to candidate GFF973 Psest_1004 Aspartate/tyrosine/aromatic aminotransferase
Query= SwissProt::E9L7A5 (479 letters) >lcl|FitnessBrowser__psRCH2:GFF973 Psest_1004 Aspartate/tyrosine/aromatic aminotransferase Length = 390 Score = 197 bits (500), Expect = 7e-55 Identities = 131/399 (32%), Positives = 200/399 (50%), Gaps = 20/399 (5%) Query: 75 SLSPRVNSVKPSKTVAITDQATALVQAGVPVIRLAAGEPDFDTPAPIVEAGINAIREGHT 134 S S R +++P +A+ ++A L G VI L GEPDF T APIV AG A+ GHT Sbjct: 4 SYSARSRAIEPFHVMALLERANQLQVQGHDVIHLEIGEPDFTTAAPIVAAGQAALAAGHT 63 Query: 135 RYTPNAGTMELRSAISHKLKEENGLSYTPDQILVSNGAKQSIIQAVLAVCSPGDEVLIPA 194 RYTP G +LR AI+ + GLS P +IL++ G +++ A + PG L+ Sbjct: 64 RYTPARGLPQLREAIAAFYAQRYGLSIDPGRILITPGGSGALLLAASLLVDPGKHWLLAD 123 Query: 195 PYWVSYPEMARLADATPVILPTSISEDFLLDPKLLESKLTEKSRLLILCSPSNPTGSVYP 254 P + RL + ++P + L P+L+E S ++ SP+NPTG++ Sbjct: 124 PGYPCNRHFLRLVEGAAQLVPVGPDVRYQLTPELVERYWDRDSVGALVASPANPTGTLLE 183 Query: 255 RKLLEQIAEIVARHPRLLVISDEIYEHIIYAPATHTSFASLPGMWDRTLTVNGFSKAFAM 314 R L +++ + LV+ DEIY + Y AS+ + D +N FSK F M Sbjct: 184 RDELARLSAALKERGGHLVV-DEIYHGLTYG----VDAASVLEVDDDAFVLNSFSKYFGM 238 Query: 315 TGWRLGYIAGPKHFIAACNKIQSQFTSGASSISQKAAVAALGLGYAGGELVATMVKSFRE 374 TGWRLG++ P + K+ A S++Q AA+A A E++ F Sbjct: 239 TGWRLGWLVAPPTAVPELEKLAQNLYISAPSMAQHAALAC--FEPATLEILEARRAEFAR 296 Query: 375 RRDYLVKSFGEIEGVKISEPRGAFYLFIDLSSYYGVEVDGFGSINNSESLCRYLLDKAQV 434 RRD+L+ + E+ EP+GAFYL+ D+S++ G ++ + C+++L+ V Sbjct: 297 RRDFLLPALRELGFGIAVEPQGAFYLYADISAFGG----------DAYAFCQHMLETEFV 346 Query: 435 ALVPGDAFGDDTC---IRISYAASLSTLQAAVERIKKAL 470 A+ PG FG +R +Y L LQ AVERI + L Sbjct: 347 AITPGLDFGRFQAGHHVRFAYTQDLPRLQQAVERIARGL 385 Lambda K H 0.317 0.132 0.375 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 440 Number of extensions: 19 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 390 Length adjustment: 32 Effective length of query: 447 Effective length of database: 358 Effective search space: 160026 Effective search space used: 160026 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory